Двухосноорієнтовні плівки. Подібні плівки отримують методом плоскощільової екструзії з наступним витягом одночасно в подовжньому і поперечному напрямі. Можливість орієнтування плівки одночасно в двох напрямах дозволяє створювати матеріали з широким спектром властивостей. Плівки з однаковою орієнтацією в двох напрямах мають приблизно рівну поперечну і подовжню міцність, яка перевищує міцність поливних полипропиленовых плівок в чотири рази. Опір початковому раздиру у подібних плівок великий, а самому раздиру дуже низьке. При розриві відносне подовження двухосорієнтовних дуже мале, оскільки при орієнтуванні досягається практично повний витяг матеріалу плівки.
Рукавна плівка з поліпропілену. Раздувні поліпропіленові плівки, що мають високу прозорість, були розроблені в якості альтернативи плівкам з целофану для різного роду упаковки. Їх міцність не така висока в порівнянні з двухосноориетированными полипропиленовыми плівками. Проте для деяких упаковок це є перевагою, оскільки полегшується їх розкриття. Паропроникність таких плівок вище, що важливо, наприклад, для упаковки хліба і зелені.
Плівки на основі севилена можуть бути отримані екструзією з роздуванням або екструзією через плоскощільову голівку. Плівки, отримані плоскощільовою екструзією, мають велику прозорість, але меншу міцність в порівнянні з раздувними.
З севилена виготовляються "стрейч" плівки, що розтягуються, плівки для теплиць, гнучких завіс для проходів і так далі.
Властивості севиленовых плівок міняються залежно від відсоткового вмісту вінілацетата в полімері. В порівнянні з плівками з поліетилену високого тиску сэвилен має нижчу температуру зварювання. Більший опір проколу. Велику еластичність і вищу стійкість до розтріскування під дією довкілля. Підвищені газо- і паропроникність, велику стійкість до вигину, кращі властивості при низькій температурі, велику клейкість. Можуть зварюватися струмами високої частоти. Фізіологічно нешкідливі.
Вінілові полімери
Сімейство вінілових полімерів отримують полімеризацією деяких заміщених этиленов. Заміщеним є тільки один з атомів водню на інший атом або групу атомів, таких як ацетатна група у разі винилацетата. Ацетатна група служить, свого роду внутрішнім пластифікатором. Заміщення призводить в цілому до підвищення фізико-механичних властивостей полімерів.
Полівінілхлорид.
Полівінілхлорид (ПВХ) є продуктом полімеризації вінілхлорида. У промисловості полімеризація робиться суспензійним, блоковим і емульсивним методом. Найпоширенішим є суспензійний метод. Вінілхлорид змішують з водою, в яку додають емульгатор, наприклад метилцелюлозу, желатин або полівініловый спирт. Вода забезпечує розсіювання тепла, що утворюється в ході полімеризації. Реакція ініціюється каталізатором, який розчиняється у
вінілхлориді, але не розчиняється у воді. В якості каталізаторів можуть бути використані пероксиди бензолу або лаурила. Суміш інтенсивно перемішують, щоб добитися каплеподібної суспензії. Полімеризація триває від шести годин до діб. Полімер, що утворився, осідає у воді у вигляді шламу. Потім суміш подають в десорбуючу збірку для видалення винилхлорида, що не прореагував, фільтрують і сушать в сушарці, що безперервно обертається.
ПВХ може бути перероблений в плівку методом екструзії з роздуванням або плоскощільової екструзії. Ці процеси широко використовуються для виготовлення тонких непластифікованих або слабо пластифікованих плівок. Однією з труднощів, пов'язаних з переробкою ПВХ, є його термічна нестабільність і корозійна активність у поєднанні з високою в'язкістю розплаву. В'язкість розплаву полістиролу або поліолефінів може бути знижена при підвищенні температури переробки, але для ПВХ цей метод не підходить, оскільки він починає дуже швидко розкладатися. Головка екструзії для переробки ПВХ має бути сконструйована так, щоб по можливості уникнути зон застою розплаву.
Непластифіковані плівки отримують з введенням стабілізатора. Ефективні стабілізатори дозволяють отримати прозорі і блискучі плівки. Плівка виходить жорсткою і має високу міцність при розтягуванні. Паропроникність у ПВХ вище, ніж у поліолефінів, а газопроникність нижча. Тому ПВХ плівки служать хорошим захистом від окислення масел і жирів. Плівки з непластифікованого ПВХ мають чудову стійкість до масел, жирів, кислот і лугів. Проте вона набрякає в хлорованих вуглеводнях і кетонах. Також плівки мають невелику схильність до злипання.
Полівінілденхлорид .
Полівинілденхлорид (ПВДХ) є продуктом сополімеризації вінілхлорида і вінілденхлорида. ПВДХ плівка може бути отримана методом екструзії з роздуванням рукава або плоскощільовою екструзією з поливом на охолоджуваний барабан. При отриманні орієнтованих плівок прийнятніше використовувати перший метод.
Мінімальна кристалічність забезпечує хорошу розтяжність ПВДХ плівок. Тому для запобігання зростанню кристалів в полімері при плоскощільовій екструзії, плівку необхідно різко охолоджувати у водяній ванні або поливом на барабан. Швидкість кристалізації ПВДХ при кімнатній температурі досить висока. Внаслідок цього плівку, отриману плоскощільовою екструзією необхідно відразу ж орієнтувати.
Для отримання двухосноорієнтовочних плівок прийнятніше використовувати екструзію з роздуванням рукава. Оскільки при цьому можна отримати плівку з рівною орієнтацією в подовжньому і поперечному напрямі.
Орієнтована ПВДХ плівка прозора і має хороші характеристики міцності. Температура зварювання складає 120 ¸ 160 ° C . Але нестійка при тривалому нагріві до температур вище 60 ° C Плівка має високий опір раздиру, але на пакувальному устаткуванні переробляється досить важко із-за своєї м'якості.
ПВДХ плівки мають прекрасні бар'єрні властивості навіть при відносно малій товщині. Тому її доцільно використовувати як одного з шарів в співекструдованих плівках. Також ПВДХ широко використовується для покриття паперу, целофану, поліпропілену та ін., але це вимагає додаткової технологічної операції, виключеної при соэкструзії.
5. Виробництво плівок екструзією
Нині існує два основні способи виробництва плівки методом екструзії : отримання рукава з роздуванням і плоскощільова екструзія. У загальних рисах будь-який агрегат екструзії включає сам екструдер, що формує інструмент - головку, пристрій охолодження, що приймальний і тягне пристрої. Для різних методів конструкція голівок і інших пристроїв має принципові відмінності, проте пристрій екструдера і принцип роботи інструменту, що формує, однаковий для обох способів. Коротко розглянемо тут у загальних рисах принцип роботи агрегату екструзії.
Екструзія це безперервний технологічний процес, що полягає в продавлюванні матеріалу, що має високу в'язкість в рідкому стані, через інструмент (голівку), що формує, з метою отримання виробу з поперечним перерізом потрібної форми. У промисловості переробки полімерів методом екструзії виготовляють різні погонажные вироби, такі, як труби, листи, плівки, оболонки кабелів і т. д. Основним технологічним устаткуванням для переробки полімерів у вироби методом екструзії є одне - і багаточерв'ячні екструдери. Головною вимогою, що пред'являється до черв'ячних машин, є гомогенізація розплаву, як по масі, так і по температурі при максимальній продуктивності і рівномірний розподіл різних добавок.
По характеру протікання в каналі черв'яка екструдера процеси можна умовно розділити черв'як на декілька зон: живлення або транспортування твердого матеріалу, плавлення або пластикації і дозування або транспортування розплаву. Кожна зона має свої особливості.
Зона живлення. Полімер у вигляді гранул або порошку поступає через завантажувальну воронку в гвинтовий канал черв'яка і захоплюється ним за рахунок різниці сил тертя між полімером і стінкою циліндра і полімером і стінками гвинтового каналу. У міру руху полімеру по черв'якові в нім розвивається високий гідростатичний тиск. Тертя, що виникає на контактних поверхнях при русі полімеру, викликає розігрівання полімеру. Що виділяється при цьому тепло йде на нагрівання полімеру. Деяка частина тепла підводиться також і від розташованих на циліндрі нагрівачів. У міру руху твердої пробки по каналу черв'яка тиск в ній зростає, пробка ущільнюється, її поверхня, дотична до внутрішньої стінки циліндра, нагрівається, і на ній утворюється тонкий шар розплаву. Поступово товщина цього шару збільшується, і у той момент, коли вона дорівнюватиме товщині радіального проміжку між стінкою корпусу і гребенем гвинтової нарізки черв'яка, останній почне відскрібати шар розплаву із стінки, збираючи його перед своєю штовхаючою гранню. Це переріз черв'яка є фактичним кінцем зони живлення і початком зони плавлення.
Зона плавлення - найбільш складна із зон черв'яка - характеризується перебуванням в каналі полімерного матеріалу в двох станах: розплавленому і твердому. Механізм плавлення полімерної пробки детально описаний у відповідній літературі. У справжній роботі він розглядатися не буде. Відмітимо лише, що як тільки ширина пробки зменшиться до 0,1 ¸ 0,2 ширини гвинтового каналу черв'яка, циркуляційний рух в шарі розплаву, що збирається перед штовхаючою стінкою, руйнує залишки пробки, дробивши її на дрібні шматки. Переріз черв'яка, в якому починається дроблення пробки, прийнято вважати кінцем зони плавлення.
Зона дозування. Течія розплаву полімеру в зоні дозування відбувається під дією сил в'язкого тертя, що розвиваються внаслідок відносного руху черв'яка і стінки циліндра, подібно до течії рідини в гвинтових насосах - по гвинтовій траєкторії. Прийнято представляти цю течію як суму двох незалежних рухів : поступального - уздовж осі гвинтового каналу і циркуляційного - в площині нормальної до осі гвинтового каналу. Об'ємна витрата поступальної течії лімітує швидкість руху пробки гранул в межах зон живлення і плавлення і, отже, визначає продуктивність екструдера. Циркуляційна течія забезпечує гомогенізацію розплаву, вирівнює його температуру, що дозволяє використовувати екструзію для змішення.