I = K ([Na2CO3] - [Na2WO4]/ Kc), (1.1)
где К—константа скорости реакции; К.с—константа равновесия; [Na2CO3 и [Na2WO4] - концентрации соды и вольфрамата натрия в объеме раствора. [1]
Рис. 1 Зависимость удельной скорости реакции разложения шеелита от молярного отношения концентрации Na2WO4/Na2CO3 в растворе при 175 °С.
Как видно из рис.1, удельная скорость реакции уменьшается примерно обратно пропорционально возрастанию отношения молярных концентраций [Na2WO4]: [Na2СО3] в растворе, что соответствует уравнению c переменной I.
Это обусловливает необходимость применения значительного "кинетического" избытка соды. С целью снижения расхода соды проводят двустадийное противоточное выщелачивание: хвосты после первого выщелачивания, содержащие 15-20 % WOз от исходного количества, выщелачивают, используя большой избыток соды. Получаемый раствор, являющийся оборотным, поступает на первую стадию процесса. Однако расход соды и в этом случае не ниже 250 % от СНК.
Шеелитовые концентраты легче разлагаются растворами соды по сравнению с вольфрамитовыми. Добавление в автоклавную пульпу NaOH или СаО (что приводит к каустификации соды) позволяет снизить расход соды.
Содержание примесей в щелоках автоклавно-содового процесса определяется взаимодействием сопутствующих минералов с растворами соды при 200—225 °С. В растворах могут присутствовать примеси соединений Si, P, As, F, Mo, A1. Для окисления примеси молибденита (с целью извлечения молибдена в вольфраматный раствор), а также удаления примеси мышьяка применяют предварительный обжиг вольфрамовых концентратов при 650—700°С. Удаление флотореагентов в процессе обжига улучшает показатели автоклавно-содового разложения вследствие исключения вспенивания пульп. В таблице 2 приведены сопутствующие компоненты шеелитового концентрата, их форма нахождения в концентрате и характер взаимодействия с растворами соды при выщелачивании.
Таблица 2. Характер взаимодействия сопутствующих минералов шеелитовых концентратов с растворами соды при 200—225 °С
Элемент | Минерал | Характер взаимодействия минерала с растворами соды | Соединение, пере-ходящее в раствор |
Фосфор | АпатитСа5(Р04)зF | Частично реагирует по обменной реакции с образованием фосфата и фторида натрия | Na2HPО4;(NaF) |
Мышьяк | АрсенопиритFeAsSСкородитFeAs04 | Частично реагирует с образованием рас творимой тиосолиРеагирует с образованием арсената нагрия | Na2HAs04Na2HAs04 |
Фтор | Флюорит CaF2 | Частично реагируетПо обменной реакции | NaF |
Кремний и алюминий | Кварц, силикаты, алюмосиликаты | Реагирует с образованием растворимыхСиликатов и алюминатов натрия | Na2SiO3,NaAl(OH)4 |
Молибден | МолибденитMoS2ПовеллитСаМо04 | Не реагирует при отсутствии окислителяРеагирует по обменной реакции | —Na2Mo04 |
Олово | Касситерит SnO2 | Практически не реагирует | — |
Медь | ХалькопиритCuFeS2 | Частично реагирует с образованием неустойчивых комплексных анионов Сu(СОз)2 | Комплекс разлагаетсяс выделениемСu(ОН)2 |
Сурьма | АнтимонитSb2S3, | Практически не реагирует | — |
Висмут | ВисмутииитBi2S3 | То же | — |
Кальций | Кальцит СаСОз | — |
Выщелачивание проводят в автоклавах двух типов: вертикальных периодического или непрерывного действия с обогревом и перемешиванием острым паром и горизонтальных вращающихся периодического действия с нагревом пульпы острым паром, и в вертикальных автоклавах с мешалками и глухим паром [3].
Автоклавы изготовляют из специальных никелевых и обычных углеродистых сталей. На отечественных заводах 2—4 вертикальных автоклава емкостью 5 м3 соединяют в батарею, работающую в непрерывном режиме (рис. 2). Горизонтальные автоклавы имеют емкость 10 м3. Шеелитовые флотационные концентраты обычно тонкодисперсные (~90% частиц диаметром менее 0,07 мм) и непосредственно поступают на приготовление пульпы, тогда как вольфрамитовые большей частью до измельчают в шаровых мельницах, работающих в замкнутом цикле с классификатором. Приготовленная в смесителе автоклавная пульпа, подогретая паром до 80—100 °С, подается насосом в автоклавы, в которых нагревается до 220—225 °С острым паром (температура пара ~250°С, давление 2,7 МПа), разбавление пульпы вследствие конденсации пара составляет 30—40 %. Концентраты и промпродукты обрабатывают при тж =1 : (3,5—4) и продолжительности 4—5 ч [2]. При непрерывном режиме работы давление в автоклавах поддерживается путем выпуска пульпы через дроссель (калиброванную шайбу из твердого сплава).
Пульпа из автоклавов поступает в самоиспаритель—аппарат, находящийся под более низким абсолютным давлением, чем автоклавы (примерно 0,15—0,25 МПа), в котором происходит интенсивное испарение и вследствие этого быстрое охлаждение пульпы. Образующийся вторичный пар используют для подогрева автоквлавной пульпы рис 2[1].
Рис. 2 Схема автоклавной установки непрерывного действия. 1-реактор подогрева, 2-насос, 3-автоклавы, 4-дроссель, 5-самоиспаритель, 6-сборник пульпы
Из самоиспарителя пульпа поступает в сборники и далее на фильтрацию на дисковых вакуумных фильтрах или автоматических фильтрпрессах.
При переработке некоторых шеелитовых концентратов (например, тырныаузских) осуществление процесса в вертикальных автоклавах при непрерывном режиме работы затруднительно вследствие образования прочных наростов на стенках труб для перетока пульпы на первой стадии выщелачивания [2]. В этом случае процесс ведут в периодическом режиме в горизонтальных вращающихся автоклавах.
При разложении шеелитовых концентратов степень извлечения вольфрама в раствор достигает 98,6—99,5%, а содержание WO3 в отвальных хвостах не превышает 1 % [4].
Основной недостаток автоклавно-содового способа—большой расход соды (260—400% от СНК). Высокая концентрация избыточной соды в растворах (80— 130 г/л) влечет за собой повышенный расход минеральных кислот на нейтрализацию растворов и, как следствие, значительную концентрацию солей в сточных водах. Примерно 30—50 % соды (в зависимости от исходной ее концентрации) можно выделить кристаллизацией Na2CO3*lOH2O, охлаждая шеелитовые щелока до 0°С. Поскольку сода выделяется с кристаллизационной водой, концентрация WO3 в растворах повышается [4].
Другой путь выведения избыточной соды (который можно сочетать с кристаллизационным) состоит в использовании электродиализа с катионитовыми мембранами. В процессе электродиализа ионы натрия из исходных вольфраматных щелоков, находящихся в анодных камерах, диффундируют через катионитовые мембраны в катодные камеры. На катоде происходит разряд ионов водорода (Н20+е=0,5; H2 + OH-), что приводит к образованию щелочи. На аноде выделяется кислород преимущественно в результате реакции Н2О - 2е = 0,5О2+2Н+.
Вследствие понижения рН в анолите первоначально образуются бикарбонат-ионы НСО3, а затем (при рН<8) выделяется CO3. He исключен также прямой разряд ионов НСОз на аноде с выделением кислорода и СОз: Кроме того, при рН<;8 образуются полимерные вольфрамат-ионы (W12O41 и другого состава).
Если выделяющийся углекислый газ пропускать через католит, содержащий NaOH, можно регенерировать соду [3].
Исследования показали, что поступающие в анодные камеры щелока должны быть предварительно нейтрализованы до рН==8—9 с целью выделения основного количества примеси кремниевой кислоты (до содержания SiO2 0,3 г/л). Нейтрализацию можно проводить выводимым из диализатора анолитом, имеющим рН=7—7,5. Выход по току (в расчете на ионы Na4-, выводимые из раствора) понижается с увеличением концентрации NaOH. Поэтому катодные камеры рекомендуется питать растворами соды, а образующуюся щелочь переводить в карбонат в скруббере, куда подается из анодных камер CO2.
По данным испытаний, на промышленных щелоках выход по току в процессе диализа составляет 84—85 % при расходе электроэнергии на регенерацию 1 т соды 2800 кВт*ч. Экономическая эффективность электродиализного способа регенерации соды очевидна. Резко сокращается не только расход соды, но и соляной кислоты на нейтрализацию автоклавных щелоков, а также объем вредных сбросов хлористых солей[2].
В зависимости от интенсивности перемешивания взаимодействие шеелита с растворами соды протекает в кинетическом или промежуточном (диффузионно-кинетическом) режиме. Естественно, что один из возможных путей интенсификации разложения концентратов—повышение температуры. В рассматриваемом случае с увеличением температуры возрастают не только скорость процесса, но и константы равновесия обменных реакций, что снижает минимально необходимый избыток соды. Действительно, как показали исследования, повышение температуры с 225 до 275—300 °С приводит к резкому сокращению продолжительности процесса и снижению расхода соды. Однако это требует использования автоклавов, рассчитанных на давление 7,0— 7,5 МПа (70—75 ат), что связано с существенными затратами и необходимостью обеспечить производство паром более высоких параметров[3].