Содержание
1. Механические свойства конструкционных пластмасс
2. Проектирование экономически эффективных изделий из пластмасс
Заключение
Литература
Введение
Тема реферата «Механические свойства конструкционных пластмасс».
Изделия из пластмасс и резины в настоящее время настолько распространены, что по своему объему и ассортименту превосходят все другие изделия, применяемые человечеством в своей повседневной жизни. Специальность «Технология переработки полимеров» - одна из новых специальностей. Она готовит специалистов в области изготовления полимерных изделий. Полимеры – уникальные вещества с целым рядом особенностей строения и свойств, которые обязательно надо учитывать при создании технологий и оборудования переработки полимерных материалов в изделия. Полимерные изделия в зависимости от назначения могут иметь самую разнообразную форму и размеры, поэтому перед изготовлением изделие надо спроектировать.
Полимерные изделия – это изделия из пластмасс или резины. При сходной высокомолекулярной природе свойства этих материалов настолько различаются, что принципы проектирования и расчета изделий не могут быть одинаковыми. Пластмассы должны иметь достаточную жесткость, а резины – эластичность.
1. Механические свойства конструкционных пластмасс
Для изделий из пластмасс важно не только обеспечить их способность сопротивляться разрушению, т.е. прочность, но и способность сохранять форму и размеры под действием механической нагрузки, т.е. иметь необходимые деформационные свойства. Прочностные и деформационные свойства составляют механические свойства, или, как чаще их называют, - физико-механические свойства. Физико-механические свойства пластмасс, как и других полимерных материалов, зависят от многих факторов: от их химического строения, степени полимеризации или молекулярной массы, структуры макромолекул и их взаимного расположения, а также от надмолекулярной структуры твердого полимера. Особенности строения пластмасс обусловливают реологические явления, такие как релаксацию, механический гистерезис, последействие и течение. Все это приводит к тому, что деформационные свойства пластмасс отличаются от свойств традиционных конструкционных материалов. Деформационные свойства пластмасс выражают на обобщенных индикаторных диаграммах, связывающих деформации и напряжения во времени.
I квадрант индикаторной диаграммы построен в координатах напряжение σ и относительная деформация ε (рис. 1). При растяжении на участке ОА наблюдается практически линейная зависимость σ – ε, т.е. выполняется закон Гука. Деформация на этом участке является упругой, восстанавливаемой. Постепенный переход на криволинейный участок АВ соответствует характерной для полимерных материалов высокоэластической деформации. Если в точке В прекратить нагружение материала и проводить наблюдение во времени при ε = const, то протекаемый процесс релаксации напряжений во времени от σ0 до σ∞ может быть показан в IV квадранте. Скорость релаксации определяется скоростью перехода макромолекул и их сегментов из неравновесного состояния в равновесное в результате их теплового движения. В связи с этим скорость релаксации зависит от температуры, размеров кинетических единиц и энергии их взаимодействия, т.е. от температуры и природы полимера.
На участке В´В´´ происходит изменение деформации во времени, которое можно представить кривой А´Е во втором квадранте. Скорость деформации постепенно уменьшается на участке А´Д до постоянного значения, характеризующего условия вязкого течения материала. Участок ДЕ соответствует вязкому течению материала при σ = const. За точкой Е начинается участок упругого упрочнения ЕЕ´, после чего происходит разрушение.
σ σ = constxВ В´ В´´
ε = constσ0 А Cσ∞
τО ε0´А0 А0´ ε´ E´´ E1´ εA´
Д
σ = const
Е
Е´
Общая деформация складывается из упругой ОА0, высокоэластической А0А0´, течения А0Е´´ и упрочнения перед разрушением Е´´Е1´.
Если в точке В´ освободить материал от нагрузки, то процесс разгружения будет происходить по-другому. Разгрузка характеризуется запаздыванием деформации по отношению к напряжению. Сначала происходит упругое восстановление (участок А´А´´ во втором квадранте), а затем деформация восстановления первоначального размера протекает с запаздыванием (упругое последействие). Петля на индикаторной диаграмме показывает работу, затраченную на потери внутри материала вследствие механического гистерезиса.
Установление критических точек и построение таких диаграмм для различных пластиков позволяет правильно выбрать режим допустимого деформирования при проектировании изделий их пластмасс.
При температурах ниже Тхр разрушающие деформации являются упругими и не превышают одного процента. В интервале температур от Тхр до Тс деформации складываются из упругих, высокоэластических и вязкотекучих и достигают до разрушения нескольких десятков процентов. В этом интервале прочность пластмасс характеризуется пределом текучести – напряжением вынужденной эластичности для стеклообразных полимеров или напряжением рекристаллизации для кристаллических полимеров. Предел текучести определяется по образованию шейки при растяжении образцов.
В интервале Тс – Тт в полимере развиваются высокоэластические деформации, равные нескольким сотням процентов. Выше Тт происходит течение расплава. Различные полимеры характеризуются разными температурами хрупкости и стеклования.
ПолимерТхр, 0С Тс0С
Полистирол90100
Полиметилметакрилат10110
Поливинилхлорид-9081
Полипропиленот -10 до -20-30
ПВС -86
Прочность полимеров повышается с понижением температуры. Наибольшая термостойкость, т.е. способность сохранять прочность при повышенных температурах, характерна для стеклопластиков и полимерных материалов с минеральными наполнителями.
Прочность полимерных материалов с ростом скорости нагружения растет. Журков вывел уравнение:
σв = ln(A-α)/α+ ½ lnv,
где σв – разрушающее напряжение (прочность);
А и α – постоянные эмпирические коэффициенты;
v – скорость нагружения.
Это уравнение справедливо только для пластмасс. В отличие от них у эластомеров при больших скоростях деформации предел прочности снижается.
При действии периодической нагрузки малой величины, не приводящей к разрушению материала, основным фактором является величина внутреннего трения, обусловливающего рассеяние энергии (механический гистерезис). Сдвиг по фазе между напряжением и деформацией учитывается динамическим модулем. Он зависит как от структуры пластмассы, так и от скорости нагружения. Так, для полистирола при скорости нагружения 0,002 м/c динамический модуль равен 4 МПа, а при 0,06 м/с – 3,4 МПа. При этих же скоростях нагружения динамический модуль для ПММА равняется соответственно: 4,8 и 3 МПа, для ПЭНП – 0,3 и 0,29 МПа.
На усталостные свойства пластмасс влияют температура, влажность, агрессивность среды, вид периодически повторяющегося переменного напряженного состояния, частота колебаний, форма и размеры изделия.
Предельное значение усталостных напряжений, ниже которого разрушение не происходит, называется пределом выносливости (σ-1). Он существует только для чистых полимеров. Наполненные полимерные материалы не имеют истинного предела выносливости (или он очень низок). Поэтому для них за предел выносливости принимают разрушающее напряжение, соответствующее 107 – 108 циклов.
Стойкость к усталости характеризуется коэффициентом усталости:
К = σ-1·100 / σв, %,
где σв – предел прочности при статической нагрузке.
Коэффициент усталости равен 0,717 для ПВХ, 0,715 для полистирола, 0,142 для полиэтилена низкой плотности.
При переменных и ударных нагрузках долговечность изделий зависит от демпфирующей способности применяемых материалов. Пластмассы имеют более высокую демпфирующую способность, чем металлы.