Содержание
Введение
1.Проектирование изделий из пластмасс
2.Особенности проектирования изделий из пластмасс
3. Выбор полимерного материала
3.1Термопластичные полимерные материалы
4.Общие принципы расчета и проектирования изделий из пластмасс
4.1Выбор допускаемых напряжений
Вывод
Литература
Введение
Тема реферата «Общие принципы проектирования изделий из пластмасс».
Цель написания работы – ознакомится с основными принципами проектирования изделий из пластмасс, а именно:
- особенностями проектирования изделий из пластмасс;
- выбором полимерного материала;
- общими принципами расчета и проектирования изделий из пластмасс.
1.Проектирование изделий из пластмасс
Пластические массы (пластмассы, пластики) – это материалы на основе полимеров, которые при переработке становятся пластичными, что позволяет отформовать изделие. Пластмассы получают на основе гомополимеров или сополимеров, и в зависимости от характера изменения свойств при переработке они могут быть термопластами и реактопластами. Физико-механические свойства пластмасс определяются видом и строением полимера, а также характером добавок (наполнителей, пластификаторов, пигментов и красителей, стабилизаторов, смазывающих веществ и т.д.).
Множество примеров успешного применения полимерных материалов в различных отраслях промышленности подтверждает, что будущее принадлежит им. При разумном использовании свойств полимеров можно проектировать многофункциональные изделия, которые технически и экономически превосходят предшествующие конструкции.
Современная техника требует все более и более сложных конфигураций изделий и конструкционных материалов. Полимерные материалы способны решить многие проблемы в этом направлении. В настоящее время наблюдается бум на производство и потребление пластмассовых изделий, что обусловлено высокими свойствами пластмасс как конструкционных материалов. Они по многим показателям превосходят металлы и другие конструкционные материалы. Пластмассы могут быть жесткими и мягкими, плотными и легкими. Пенопласты и поропласты имеют плотность 20 - 100 кг/м3, полипропилен – 900; фторопласты – 2200 кг/м3. В среднем пластмассы в 5 - 7 раз легче стали и меди и в 2 раза легче алюминия.
Большинство пластмасс значительно превосходят сталь и ряд других металлов по устойчивости к атмосферной коррозии и к воздействию различных кислот, щелочей, солей, растворителей.
В зависимости от требований пластмассы могут иметь как низкий, так и высокий коэффициент трения. Низкий коэффициент трения и высокая износостойкость полиамида, фторопласта, текстолита, ДСП и др. используются в подшипниках, работающих и в условиях смазки, и без нее. Полиамид 6 имеет износостойкость в 10 - 20 раз выше, чем у бронзы и баббита при использовании смазки. Высокий коэффициент трения асботекстолита используется в тормозных устройствах.
Многие пластмассы имеют исключительно высокие диэлектрические свойства и широко применяются в электрических и электротехнических приборах, в высокочастотных устройствах.
Такие пластмассы как поликарбонат, полистирол, ПММА и др. – прозрачны, бесцветны и способны пропускать световые лучи в широком диапазоне волн, в том числе – УФ. ПММА (органическое стекло) пропускает ~73 % УФ-лучей, в то время как обычное стекло – только 1 - 2 %. Оргстекло намного прочнее, что очень важно для оптической промышленности.
Пластмассовые изделия могут иметь твердую или мягкую, блестящую или матовую, гладкую или фактурированную поверхность, что достигается путем варьирования вида материала и характера обработки поверхности формы.
Очень важными достоинствами пластмасс являются доступность сырья и простота переработки.
Однако пластмассы имеют и недостатки, которые обязательно надо учитывать при проектировании изделий из них:
1)низкая теплостойкость, связанная с химическим строением полимера;
2)низкая твердость;
3)недостаточно высокая прочность, которая к тому же существенно зависит от времени и температуры эксплуатации, При постоянной температуре повышение механического напряжения сокращает время до разрушения материала. Увеличение времени эксплуатации приводит к разрушению материала при меньшем механическом напряжении. При постоянном механическом напряжении повышение температуры эксплуатации сокращает время до разрушения материала;
4)ползучесть, проявляющаясяподпостояннойнагрузкой. Наиболееустойчивы к ползучестиреактопласты, а также полиформальдегиди его сополимеры, поликарбонат, АБС-пластики. Сопротивление пластмасс ползучести повышают путем армирования их неорганическими наполнителями; стеклотканью, стекловолокном;
5)старение, резко снижающее физико-механические свойства. Процесс старения пластмасс замедляют (но не устраняют) путем введения в полимер специальных добавок - светостабилизаторов. Эффективным светостабилизатором является технический углерод (сажа). Наиболее стойки к старению фенопласты и некоторые другие реактопласты, а также поликарбонат, полиформальдегид и его сополимеры.
2.Особенности проектирования изделий из пластмасс
Конструкции многих изделий из пластмасс часто повторяют конструкции металлических изделий. Однако пластик требует учета особенностей присущих ему характеристик.
По сравнению с другими конструкционными материалами свойства пластмасс могут варьироваться в гораздо более широких пределах. Специфические свойства практически любого базового полимера можно изменить самым коренным образом путем введения в него простых или армирующих наполнителей, модификаторов и других добавок. Но и основные свойства полимерных материалов, как правило, кардинально отличаются от основных свойств металлов. Если провести, например, прямое сопоставление, то у металлов значительно выше такие показатели, как плотность, максимальная рабочая температура, жесткость и прочность, теплопроводность, электропроводность; в то время такие свойства конструкционных термопластов, как амортизация механических нагрузок, тепловое расширение, относительное удлинение при разрыве, ударная вязкость выше на несколько порядков.
Когда речь идет о замене металла полимерным материалом, то для того, чтобы изготовить функциональные элементы из пластмассы при одновременном снижении себестоимости, в большинстве случаев необходимо коренным образом менять конструкцию этих элементов. При этом открывается перспектива полнейшей переработки конструктивного решения изделия, дающая возможность интегрировать функции и упростить геометрию.
При одних и тех же условиях эксплуатации пластмассы иногда ведут себя иным образом по сравнению с металлами. Именно по этой причине какая-нибудь функционально целесообразная и экономичная конструкция, сделанная когда-то из литого металла, может легко сломаться, если ее с излишней поспешностью повторить из полимерного материала. Поэтому разработчики конструкций из пластмасс должны обязательно знатьсвойства этой группы материалов.
Чем ближе температура эксплуатации материала к его точке плавления, тем больше характер его деформации зависит от температуры и времени. У большинства пластиков наблюдаются изменения их основных механических свойств уже при комнатной или близкой к ней температуре или от скорости воздействия нагрузки. А для металлов, как правило, характерно постоянство механических свойств вплоть до таких температур, значения которых очень близки к температуре перекристаллизации (> 300 0С). Если менять в достаточно широком диапазоне рабочую температуру или скорость деформации, то конструкционные термопласты могут изменить твердость и хрупкость на эластичность, характерную для резин. Например, чехол аварийной автоматической подушки в автомобиле в случае ее применения должен обладать способностью к взрывному раскрытию. Этим он должен полностью отличаться от сделанного из того же материала изделия на защелках, которое приводится в рабочее состояние медленно. Причем это снабженное защелками изделие и должно приводиться в рабочее состояние медленно, поскольку это зависит от условий его эксплуатации на холоде или при жаре. Значение температуры здесь значительно важнее, чем скорость изменения нагрузки.
Характеристики полимерных материалов не являются в чистом виде свойствами материала как такового в конкретных условиях эксплуатации. Базовый уровень свойств какого-либо пластмассового изделия может меняться от воздействия самых разнообразных факторов, в частности, от ультрафиолетового облучения вплоть до разрушения и полной непригодности к дальнейшей эксплуатации. Великолепно сконструированное и отформованное пластмассовое изделие может быстро сломаться, если режимы формования были подобраны ненадлежащим образом. С другой стороны, и технологи не могут в широком масштабе устранять конструкторские просчеты. Хорошее качество пластмассовых изделий может быть гарантировано лишь благодаря процессу оптимизации, который учитывает все влияющие факторы. Поскольку полимерные материалы по сравнению с металлами более чувствительны к конструктивным недоработкам, то при разработке конструкций пластмассовых изделий необходимо обращать особое внимание на то, чтобы конструктивное решение соответствовало материалу. Поэтому проектирование изделия из пластика должно каждый раз начинаться со всестороннего и тщательного анализа всех требований.
3. Выбор полимерного материала
Является самым важным этапом проектирования полимерных изделий, в том числе и изделий из пластмасс. Нет плохих полимерных материалов, а есть материалы, не соответствующие конкретному применению. Поэтому для конструктора чрезвычайно важно досконально знать свойства конкурирующих материалов и тщательно проверить, как эти свойства влияют на технологию изготовления изделий из этих материалов.