Смекни!
smekni.com

Способы очистки газообразных выделений при электролизе алюминия (стр. 2 из 5)

Становится очевидным, что промышленность не только столкнулась с техническими трудностями при улавливании выбросов, но существует и последующая проблема их очистки. Было разработано два различных способа переработки выбросов - сухой и мокрый процессы. На ранних стадиях газоочистки существовала неопределенность эффективности улавливания фтора оборудованием, поскольку не было соответствующего пробоотбора и аналитических методов. К примеру, оборудование для пробоотбора редко обеспечивало необходимую эффективность, достаточную для определения субмикронной фракции мелкого материала. Далее, при совершенствовании пробоотбора микрочастиц мокрые скруббера и циклоны оказались менее эффективными, чем декларировались ранее. Главный прорыв в технологии контроля выбросов был осуществлен в 60-е годы, когда была разработана система общей газоочистки, способная эффективно регенерировать выбросы фторидов. Первая система сухой газоочистки использовала активированный глинозем, однако впоследствии процесс был модернизирован для работы на металлургическом глиноземе.

1. Способы очистки газообразных выделений при электролизе алюминия

Традиционно используемая технология описывается способами, применяемыми для поглощения из газовой фазы фтористого водорода. Мокрая очистка является методом, когда для улавливания и удаления фторидов в виде твердых веществ или жидкой фазы применяется водный раствор, тогда как сухая очистка позволяет химически сорбировать газообразный фтор глиноземом.

1.1 Мокрая газоочистка

Мокрые скрубберы часто устанавливаются на заводах, регенерирующих криолит или фтористый алюминий. Сегодня акцент делается на способах очистки промышленных стоков и безопасности отвалов. Специфические местные условия и возможности безопасного размещения отходов стали основными параметрами очистки выбросов вследствие существования жестких требований предотвращения вторичного загрязнения.

Наиболее широко мокрые скрубберы сегодня используются для улавливания двуокиси серы после сухих скрубберов, или при наличии экстремально высоких природоохранных стандартов, и становится необходимым очищать корпусные газы в качестве помощи сухим скрубберам. Мокрые скрубберы применяются также для очистки топочных газов печей обжига анодов.

1.1.1 Химизм процесса

Фтористый водород и двуокись серы растворимы в воде, но в раствор обычно добавляется щелочь для повышения растворимости и последующего снижения обратного давления, развиваемого жидкостью. Это также обеспечивает снижение потока жидкости, который необходимо постоянно отводить от скруббера. При использовании прямой добавки в скрубберный раствор гашеной извести газоочистка проходит по реакциям:

2HF(г) + Ca(OH)2(р-р) = CaF2(тв) + 2H2O(ж)

SO2(г) + Ca(OH)2(р-р) = CaSO3*1/2H2O(тв) +1/2H2O(ж)

2[CaSO3*1/2H2O](тв) + O2(г) + 3H2O(р-р) = 2[CaSO4*2H2O](тв)

Оросители и брызгоуловители устанавливаются для защиты от широкомасштабного образования брызг при росте количества нерастворенного продукта, приводящего к увеличению трудозатрат и снижению эффективности работы. Добавка извести сегодня также не практикуется. Она была вытеснена более широко используемым двойным щелочным процессом. Фтористый водород здесь поглощается щелочным раствором натрия по реакциям:

2HF(г) + Na2 CO3(р-р) = 2NaF(р-р) + СО2(г) + H2O(ж)

HF(г) + 2NaOH(р-р) = 2NaF(р-р) + H2O(ж)

Поскольку HF растворим в воде, часто щелочь добавляется в меньшем количестве, чем требуется по стехиометрии, что снижает тем самым расход материалов.

Растворение SO2 можно эффективно уменьшить, а количество фтористого водорода сохранить контролируя рН. Равновесное парциальное давление фтористого водорода над кислым раствором, содержащим недиссоциированный HF мало по сравнению с давлением SO2 с такой же молярной концентрацией недиссоциированной кислоты. Это является причиной, почему фтористый водород легко адсорбируется с высокой эффективностью даже простыми, параллельно установленными скрубберами в кислой среде.

1.1.2 Обработка или утилизация растворов мокрой газоочистки

Если извлечения фтора не требуется, очистка раствора скруббера может быть осуществлена реакцией с гашеной известью для осаждения фторидов и регенерации поглощающего раствора по уравнению:

2NaF(p-p) + Ca(OH)2(p-p) + СО2(г) = CaF2(т) + Na2CO3(р-р) + H2O(ж)

2NaF(p-p) + Ca(OH)2(p-p) = CaF2(т) + 2NaOH(р-р)

Скорость агломерации осажденных частиц фтористого кальция увеличивается при добавлении флокулянта, после чего взвесь концентрируется в отстойнике для образования осадка с содержание твердого 2-3 % масс. Затем, перед отводом в безопасное место, этот донный осадок обезвоживается на центрифуге или барабанном вращающемся вакуум-фильтре для увеличения содержания твердого до 25-50% масс. Иногда из слива отстойника перед его возвратом желательно удалять твердые взвеси (50-100 ррм), и это может быть достигнуто при использовании промежуточных фильтров.

Вследствие потерь от испарения и отвода требуется их компенсация. Отвод растворов необходим для предотвращения повышенного содержания хлоридных, нитратных, сульфатных и других ионов, приводящих к коррозии используемого оборудования.

Другим вариантом является осаждение фтористого кальция при одновременной добавке гашеной извести и хлористого кальция. рН сточной воды может быть далее доведен до необходимого уровня, но здесь следует не допустить возникновения повышенной концентрации хлоридных ионов, также приводящих к коррозии.

На заводах, расположенных в местах с жарким и сухим климатом прямая утилизация отработанного раствора от скрубберов иногда практикуется с помощью откачки сточных растворов в бассейны - солнечные испарители. В данной концепции отвода стоков используются башни - оросители для поглощения SО2. Для снижения потерь воды от испарения концентрация отводимой жидкости контролируется, обеспечивая содержание растворенного сульфата натрия 10% масс., а рН поддерживается в пределах 7-8. Этот способ требует по меньшей мере стехиометрической добавки щелочи перед утилизацией для того, чтобы избежать повторного выброса двуокиси серы в атмосферу при испарении.

Прибрежные заводы могут использовать морскую воду для удаления фтористого водорода и диоксида серы. Морская вода слегка щелочная, имеет рН 8 и содержит 2.3 мг/л щелочи вследствие наличия бикарбоната. Поглощение и нейтрализация идут по реакциям :

SO2(г) + HCO-3(p-p) = HSO-3(p-p) + СО2(г)

и

HF(г) + HCO-3(p-p) = F-(р-р) + H2O(ж) + СО2(г)

Насыщение раствора кислородом приводит к тому, большая часть сульфита окисляется до сульфата до утилизации. Для обеспечения полного окисления может использоваться активация. Сброс слабокислых сточных морских вод в океан осуществляется достаточно широко, поскольку безвреден для местной морской среды. Морская вода уже содержит сульфатные и фтористые ионы как природные составляющие.

1.1.3 Извлечение уловленных фторидов из растворов мокрой газоочистки

Процессы производства из растворов мокрых скрубберов разработаны как для получения фтористого алюминия, так и криолита. Эффективность производства фтористого алюминия может достигать 60%, если мокрая газоочистка осуществляется после удаления твердой пыли с помощью электрофильтров. Водный раствор фтористого водорода реагирует с гидроокисью алюминия по реакции:


3HF + Al(OH)3 = AlF3*3H2O

После кристаллизации гидратированный фтористый алюминий сушится при температуре 500ОС с образованием 95% чистого безводного продукта. Раствор реагирует с сульфатом алюминия с образованием криолита согласно реакции:

12NaF + Al2(SO4)3 = 2Na3AlF6 + 3Na2SO4

Поскольку это реакция количественного определения, образованные в ее результате продукт всегда будет загрязнен сульфатом. Другим ее недостатком является то, что количество произведенного криолита всегда далеко превосходит его потребление производителями, снижая таким образом экономическую выгоду.

1.1.4 Эффективность мокрой газоочистки

Оборудование для мокрой газоочистки современной конструкции очень эффективно для улавливания фтористого водорода и материала в виде крупных частиц даже при падении давления в системе газосбора. Однако удаление субмикронных фторидных частиц значительно более сложно, и это также приводится как сравнение сложности конструкций систем газоочистки.

Эффективность улавливания фторидов мокрыми скрубберами становится выше, если очищается газ, отходящий от электролизеров Содерберга. Конструкция электролизеров с верхним токоподводом в этом плане особенно удачна, поскольку большинство фторидов выделяется в виде легко улавливаемого фтористого водорода. Более того, гранулометрический состав содержит повышенную долю крупных частиц, чем сравнимая пыль из электролизеров с обожженными анодами.

Выбор подходящих коррозионно устойчивых конструкционных материалов для электролизеров с мокрой газоочисткой приобретает особое значение вследствие высокой концентрации газовых компонентовна выходе. Они выше чем в корпусных газах в 10-1000 раз, тогда как концентрация в жидкой фазе также соответственно выше. Корпуса скрубберов обычно выполняются из фибергласса или бетона, футеруются полимерными смолами. Наиболее предпочтительным материалом для различных внутренних компонентов скруббера является термопластик.