6) Наноматериалы и нанотехнологии
Все вышеперечисленные технологии химических производств на практике могут быть реализованы только в конкретном оборудовании. Поэтому основной задачей специалистов в области химической инженерии (механик хим. производств) является работа с таким оборудованием.
Особенности работы оборудования химических производств
1. Работа с повышенными (пониженными) температурами. Пониженные – от криотемператур(-273о) до ~3000оС.
2. Работа с повышенными (пониженными) давлениями. От 0 Па (вакуум) (1атм~101,3 кПа.) до ~1000 МПа.
3. Работа с веществами находящимися в газообразном, жидком, твердом и дисперсном состоянии.
4. Фазовые превращения рабочих веществ.
5. Работа с энергонасыщенными веществами (пожаро -, взрывоопасные вещества).
6. Работа с токсичными веществами.
7. Крупнотонажность химических производств.
В химических технологиях исходное сырье превращается в конечный продукт в результате хим. превращений, сопровождающихся не только химическими реакциями, но и изменениями физико-химических свойств сырья, изменением структуры и агрегатного состояния веществ, а также физическими, тепловыми, гидравлическими и т.п. процессы. Все это в комплексе составляет химико-технологический процесс.
В химической технологии процессы классифицируют в соответствии с законами, лежащими в их основе:
1. Гидромеханические процессы – процессы, протекающие в жидкостях, но сопровождающиеся движением перемешивания, разделения, перемещения, фильтрования и т.д.
2. Тепловые процессы – процессы, сопровождающиеся отводом (подводом) тепла. А значит это нагрев, охлаждение, испарение, конденсация и т.д.
3. Массообменные процессы – процессы обмена веществом между разными компонентами. Поглощение, экстракция, растворение, адсорбция (твердое вещество поглощает из жидкости), абсорбция (поглощение жидкостью из жидкости или газа), кристаллизация.
4. Механические процессы – процессы сопровождающиеся переработкой твердых веществ (сыпучих) (щебень, гравий). Транспортирование, смешение, разделение, дробление, прессование и т.д.
5. Химические процессы – процессы, сопровождающиеся химическими реакциями.
Реализация вышеперечисленных процессов возможна только в соответствующем оборудовании.
Все оборудование хим. производств можно разделить на 3 класса:
1. Аппараты
2. Машины
3. Транспортирующие средства.
Аппарат – техническое устройство или приспособление, предназначенное для проведения химико-технологических процессов.
Машины – устройство, выполняющее механические с целью преобразования вещества, энергии или информации.
Транспортирующие средства – оборудование (чаще всего машины), предназначенное для перемещения вещества по территории предприятия.
В зависимости от назначения оборудование хим. производств делят на:
1. Универсальное.
2. Специализированное.
3. Специальное.
Универсальное – оборудование, которое может использоваться без изменений в различных химических производствах (насосы, компрессоры, вентиляторы, центрифуги, сушилки, калориферы и т.д.).
Специализированное – оборудование, предназначенное для проведения одного процесса в разных модификациях (теплообменник, ректификационная колонна, холодильники, абсорберы и т.д.).
Специальное – оборудование, предназначенное для проведения только одного процесса (дробилка, пресс, сепаратор, сушилка, реактор и т.д.).
Все технологическое оборудование делят на основное и вспомогательное.
Основное – то оборудование, в котором получается промежуточный или целевой продукт.
Вспомогательное – оборудование, предназначенное для промежуточных, дополнительных операций (хранилища, резервуары, емкости, трубопроводы, трубопроводная арматура).
Для инженера работа с оборудованием заключается:
1. Проектирование – создание достаточного количества информации об оборудовании. Предполагает создание графической информации (чертежи, 3D-модели), и выполнение расчетов.
2. Изготовление, сборка, монтаж.
3. Эксплуатация.
4. Ремонт оборудования.
5. Материаловедение и правильный выбор материалов.
6. Выбор и использование электрооборудования.
7. Обеспечение безопасности оборудования, как при проектировании, так и при эксплуатации.
8. Обеспечение надежности оборудования.
Вся вышеперечисленная работа с оборудованием в современных условиях предполагает правильное применение компьютерной техники.
2.1 Устройство коксовой печи
Коксовая печь - технологический агрегат, в котором осуществляется коксование каменного угля. Первые коксовые печи (так называемые стойловые) стали применять в начале 19 в. Они состояли из кирпичных стенок высотой до 1,5 м и длиной до 15 м, расположенных друг от друга на расстоянии 2—2,5 м. Загруженный в пространство между стенками уголь покрывали сверху и с торцов землёй и поджигали. Коксование продолжалось 8—10 дней. В 30-х гг. 19 в. появились ульевые печи, в которых коксование протекало в закрытых куполообразных камерах с небольшим доступом воздуха. В середине 19 в. получили распространение пламенные коксовые печи с внешним обогревом. Угольную шихту загружали в выложенные из огнеупорного кирпича камеры, разделённые обогревательными простенками с вертикальными каналами, в которых сжигался коксовый газ. Важным этапом явилось создание в 70-х гг. 19 в. коксовые печи с улавливанием химических продуктов из коксового газа. В этих печах камеры коксования были отделены от отопительных простенков. Современные коксовые печи по способу загрузки угольной шихты и выдачи кокса подразделяют на горизонтальные и вертикальные. Наиболее широко распространены горизонтальные коксовые печи периодического действия. Такие коксовые печи состоят из камеры коксования, обогревательных простенков, расположенных по обе стороны камеры, регенераторов. На верху камеры коксования предусмотрены загрузочные люки, с торцов камера закрыта съёмными дверями. Длина камер достигает 13—16 м, высота 4—7 м, ширина 0,4—0,5 м. Обогрев камер осуществляется за счёт сжигания в вертикальных каналах простенков коксового, доменного или др. горючего газа. Период коксования одной угольной загрузки зависит от ширины камеры и температуры в обогревательных каналах и составляет обычно 13—18 ч. По окончании коксования раскалённый кокс выталкивают из камеры через дверные проёмы коксовыталкивателем и тушат. Для компактности коксового цеха и лучшего использования тепла коксовые печи объединяют в батареи (по 61—77 коксовых печей в каждой) с общими для всех печей системами подвода отопительного газа, подачи угля, отвода коксового газа. Все операции по обслуживанию коксовые печи (загрузка, съём и закрытие дверей и люков, выдача и тушение кокса и т.д.) механизированы и автоматизированы. Разрабатываются коксовые печи непрерывного действия, например вертикального и кольцевого типа. [1]
Коксохимические заводы сооружаются, как правило, вблизи металлургических заводов и входят в их состав, либо как отдельные предприятия. Коксохимическая промышленность отличается высокой концентрацией производства, т. е. заводы являются весьма мощными и имеют высокую производительность.
Современные печи для коксования углей представляют собой горизонтальные прямоугольные камеры, выложенные из огнеупорного материала. Камеры печей обогреваются через боковые стены. Печи располагаются в ряд и объединяются в батареи для уменьшения потери тепла и достижения компактности. В типовую батарею печей с шириной камер 410 мм входят обычно 65 печей, а в батарею большой емкости с камерами шириною 450 мм входят 77 печей. Обычные камеры имеют полезный объем 20—21,6 м3, а печи большой емкости—30 м3. Ширина печей более 450 мм нецелесообразна из-за ухудшения качества кокса (повышения истираемости). Для облегчения выталкивания кокса из камеры коксования ширину камеры со стороны выдачи кокса делают на 40—50 мм шире, чем с машинной стороны. Таким образом, камера имеет вид конуса. За основные элементы батареи надо принять следующие: фундамент, регенераторы, корнюрную зону, зону обогревательных простенков, перекрытия простенков и перекрытия камер. [2]
Фундамент представляет собой бетонное основание, имеющее с боков железобетонные укрепления — контрфорсы, которые сдерживают перемещение кладки батареи при ее разогреве. Фундамент состоит из двух плит. На нижней плите установлены верхние сооружения батареи. В верхней плите обычно располагают борова печей. Батарея имеет четыре борова для отвода продуктов горения. Над фундаментом расположен подовый канал для подвода воздуха и бедного газа или же отвода продуктов горения из регенераторов.
Регенераторы предназначены для подогрева воздуха и бедного газа своей насадкой, предварительно нагретой теплом отходящих продуктов горения из обогревательного простенка печей.
Над регенераторами находится корнюрная зона, которая является основанием камер печей и обогревательных простенков. В ней расположены каналы для подвода коксового газа к вертикальным каналам обогревательного простенка. Эти каналы иначе называются корнюрами.
Над корнюрной зоной расположена зона обогревательных простенков, в которой находятся камеры печей для коксования углей. Наружные стены обогревательных простенков одновременно являются стенами камер печи.
Для отопления печей применяются коксовый, доменный, генераторный, обезводороженный коксовый газы и их смеси. [2]
При обогреве коксовым газом применяется так называемый «обратный коксовый газ», т. е. газ, прошедший через аппаратуру, улавливающую ряд химических продуктов. В составе обратного коксового газа содержится до 60% водорода, который целесообразно извлечь и использовать на азотнотуковых заводах для синтеза аммиака. Обезводороженный коксовый газ (не содержащий водорода) также можно применить для отопления печей. Генераторный газ применяется лишь в тех случаях, когда приходится экономить коксовый газ, который целесообразнее использовать как бытовое топливо.