Смекни!
smekni.com

Реконструкция установки для сушки древесины (стр. 1 из 5)

Содержание

Введение

1. Основные сведения

2. Технологический расчет

3. Тепловой расчёт

4. Аэродинамический расчет

5. Описание технологического процесса

Список литературы


Введение

Сушка древесины относится к одному из важнейших процессов тех-нологии деревообработки, направленных на повышение качества и долговечности изделий из нее. Из-за применения недосушенной или некачественно просушенной древесины народное хозяйство несет большие убытки.

Основным средством увеличения объемов подвергаемых сушке пиломатериалов и улучшения качества сушки является строительство новых и реконструкция устаревших сушилок. Практически все установки в качестве источника тепла имеют паровой калорифер. Пар, подаваемый в теплообменники и используемый для начального прогрева древесины, а также для промежуточных и конечных влаготеплообработок, имеет одну природу: это сухой насыщенный пар различного давления с температурой до 155с.

Однако в настоящее время на большинстве предприятий лесного комплекса в основном используются водогрейные котлы низкого давления, укомплектованные топками, в которых сжигаются древесные отходы различного вида, и практически нет технологического пара для целей сушки. Сушка в таких предприятиях ведется только по мягким режимам, влаготеплооработка, как правило, не проводится.

В связи с этим вопросы рационального проектирования, выбора наиболее целесообразных способов сушки, разработки более совершенных технологических и конструктивных схем камер приобретают особую актуальность.


1.Основные сведения

Лесосушильная камера типа ИнтерУРАЛ была разработана в 1991г., учитывая преимущества созданной ранее камеры УРАЛ-72, а также прошла всесторонние испытания, как на стенде, так и в промышленных условиях.

Идея и универсальность установки заключалась в том, что, имея однотипный корпус, вентилятор и систему автоматики, она отличалась внутри данного класса установок только конструкцией источника тепла. Его конструктивные особенности, в свою очередь, отличались друг от друга применяемым видом теплоносителя. Дополнительно, с целью получения пиломатериала наивысшего качества в конструкции камеры были использованы все достижения уральских разработок по аэродинамике равномерной раздачи сушильного агента по штабелю пиломатериалов.

Для упрощения конструкции и технологии изготовления в камерах исключено реверсирование потока воздуха по штабелю.

При обозначении типов камер принята следующая система классификации:

цифры после дефиса-1, 2-количество штабелей в камере;

буквы - теплоноситель, тип источника тепла или характеристика корпуса камеры: п – паровая; в – водяная; э – электрическая с тэнами; и – индукционная; тг – с топочными газами; КГ – контейнерная газовая; МД – малогабаритная, деревянная; МЭ – малогабаритная, электрическая.

В камерах для побуждения движения воздуха стоит роторный цен-тробежный вентилятор, конструкции проф. Микита Э.А., унифицированный, с радиальными лопатками (для повышения надежности и долговечности его частота вращения n=250-270 об/мин).

Корпус сушильных камер конструкции «ИУ» состоит из металличе-ских панелей (типа «сэндвич») с теплоизоляцией из минераловатных материалов. Внутренняя обшивка камер выполнена из нержавеющей стали, наружная – из профильного оцинкованного стального листа. Монтаж корпуса камеры осуществляется непосредственно у заказчика, на месте эксплуатации.

Камеры отличаются друг от друга, как это отмечалось выше, только источником тепла: в паровых и водяных (ИУ – 1гв) – это компактные биметаллические калориферы.

Технологические показатели камеры ИУ – 1гв.

Габаритные размеры штабеля, м 6,6х1,8х2,6

Число штабелей, шт 1

Вместимость камеры 14,7

Годовая производительность, м3 1000

Побудитель циркуляции центробежный вентилятор№20

Производительность вентилятора, тыс.м3/ч 72,0

Установленная мощность электродвигателей, кВт 11,0

Скорость воздуха в штабеле, м/с 2,3

Тепловое оборудование БМК

Источник тепла горячая вода

Масса, т 7,8

2. Технологический расчет

2.1 Пересчёт объёма фактического материала в объём условного материала

Для учёта и сопоставления фактической производительности камер с плановой, а также для составления производственных программ лесосушильных цехов установлена учётная и плановая единица – кубический метр условного пиломатериала.

Условному материалу эквивалентны сосновые обрезные доски толщиной 40 мм, шириной 150 мм, длиной более 1000 мм, высушенные по II категории качества от начальной влажности 60% до конечной влажности 12%.

Объём высушенного или подлежащего сушке пиломатериала заданной спецификации Ф пересчитывается в объём материала У3 усл.) по формуле:

У=Ф bоб.усл tоб.ф / tоб.услbоб.ф, (2.1)

где Ф – объём фактически высушенного или подлежащего сушке пиломатериала данного размера и породы (задаётся в спецификации), м3;

bоб.усл – коэффициент объёмного заполнения штабеля условным пиломатериалом;

tоб.ф – продолжительность оборота камеры при сушке фактического материала данного размера и породы, суток;

tоб.усл – продолжительность оборота камеры при сушке условного материала, суток;

bоб.ф – коэффициент объёмного заполнения штабеля фактическим материалом.

Кп=bоб.усл/tоб.усл, (2.2)

где Кп – пересчётный коэффициент.

У=Ф.Кп.tоб.ф/bоб.ф,(2.3)

Определение продолжительности сушки в камере периодического действия.

Общая продолжительность сушки, включая прогрев и влагообработку, находится по формуле:

t=tисх..Ар.Ац.Ав.Ак.Ад + tзаг, (2.4)

где tисх. – исходная продолжительность собственно сушки пиломатериалов заданной породы и размеров низкотемпературным режимом от начальной влажности 60% до конечной влажности 12% в камерах с реверсивной циркуляцией средней интенсивности (расчётная скорость сушильного агента по материалу 2 м/с), ч;

tзаг – время на загрузку и выгрузку штабелей из камеры, равную 0.1 суток или 2.4 часа;

Ар; Ац; Ав; Ак; Ад – коэффициенты, учитывающие категорию режима Ар; интенсивность циркуляции Ац; начальную и конечную влажность Ав; качество сушки Ак; длину материала Ад.


Таблица 2.1 - Определение продолжительности сушки пиломатериалов

Таблица 2.2 - Пересчёт объёма фактических пиломатериалов в объём условного материала.

2.2 Определение производительности камер в условном материале

Пу=335 Кп Г, м3усл/год, (2.5)

где Пу – годовая производительность в условном материале, м3усл/год;

Кп – пересчётный коэффициент;

Г – габаритный объём штабелей, м3

Г=n.l.b.h , м3, (2.6)

где n – число штабелей в камере,

l, b, h – соответственно габаритная длина, ширина и высота штабеля, м.

Пу=335.0.065(6.6.1.8.2.6)=672,6 м3усл/год.

2.3 Определение необходимого количества камер

Необходимое количество камер для выполнения заданной программы определяется по формуле:

Пкам=SУ/Пу, (2.7)

где SУ – общий объём условного материала, подсчитанный по формуле:

SУ=У12+…+Уn(2.8)

Пу – годовая производительность одной камеры в условном материале, подсчитанная по формуле:

Пкам=9429,77/672,6=14 шт.

Принимаем 20 камер типа ИУ‑1гв.

2.2 Тепловой расчёт

Выбор расчетного пиломатериала.

За расчётный материал в практике проектирования лесосушильных камер выбирается наиболее быстросохнущий пиломатериал. Тепловое оборудование, рассчитанное по быстросохнущему пиломатериалу, надёжно обеспечит сушку пиломатериалов всех пород и сечений.

Выбираем из нашей спецификации пиломатериалов, подлежащих сушке, хвойные доски (сосна), сечением 25х150 и длиной 6500 мм.

2.2.1 Определение массы испаряемой влаги

Масса влаги, испаряемой из 1 м3 пиломатериалов, m3, кг/м3

, (2.9)

где

- базисная плотность расчетного пиломатериала, кг/м3, определяется из таблицы 1 [5];

Wн, Wк – начальная и конечная влажность древесины, %.

Масса влаги, испаряемой за время одного оборота сушильной камеры, mоб.кам., кг/об.

mоб.кам. = m3Е=252.8,3=2091,6 кг/об. (2.10)

Е= Г.вф=6,5.1,8.2.0,356=8,3 м3, (2.11)

где Е - емкость камеры, м3;

Г - габаритный объем всех штабелей, загружаемых в камеру, м3;

вф – коэффициент объемного заполнения штабеля расчетным пиломатериалом.

Масса влаги, испаряемой из камеры в секунду, кг/с,

, (2.12)

где

суш.ф. - общая продолжительность сушки, ч.