Смекни!
smekni.com

Технологія монтажу, ремонту та правила технічного обслуговування синхронних двигунів (стр. 1 из 8)

Міністерство освіти і науки України

Рівненське обласне управління освіти

Рівненський професійний ліцей

Письмова екзаменаційна робота

за фахом: Електромонтер з ремонту та обслуговування електроустаткування

на тему: «Технологія монтажу, ремонту та правила технічного обслуговування синхронних двигунів»

учня групи № 18

Кравчука Сергія Миколайовича

Керівник роботи: Костюкевич І.Г.

м. Рівне

2010

Зміст

Вступ

1 Організація робочого місця електромонтажника

2 Синхронні машини

2.1 Призначення і улаштування синхронних машин

2.2 Принцип дії синхронного двигуна

2.3 Робота трьохфазної синхронної машини в режимі двигуна

2.4 Характеристика трифазного синхронного двигуна

2.5 Синхронні машини малої потужності

2.6 Монтаж електричних машин

2.7 Ремонт електричної машини

3 Інструменти, вимірювальний і контрольний інструмент

4 Матеріали, що застосовуються при виконанні роботи

4.1 Матеріали, що використовуються в двигунах

4.2 Група провідникових матеріалів

4.3 Електроізоляційні матеріали

4.3.1 Електроізоляційний картон ЕВ, ЕВС та ЕВТ

4.3.2 Бавовняна стрічка (кіперна, тафтана, міткалева, батистова)

4.3.3 Склострічка ІЕС

4.3.4 Електрізоляційні лакотканини

4.3.5 Склолакотканина ЛСК-7

4.4 Просочувальні лаки

4.4.1 Просочувальний лак № 447

4.4.2 Просочувальний лак № 458

4.4.3 Просочувальний лак № 460

4.5 Припої

4.5.1 Припої, які складаються в основному із сплаву олова та свинцю

4.5.2 Мідно-фосфористі та срібні припої

4.6 Мастильні матеріали

4.7 Матеріали, що використовуються для виготовлення сердечників, статора та ротора, та корпусу двигуна

4.7.1 Використання заліза

4.7.2 Використання металевих магнітом’яких матеріалів

5 Техніка безпеки при виконанні роботи

5.1 Обслуговування двигунів, генераторів, синхронних компенсаторів

5.2 Виводи обмоток і кабельні воронки в електродвигунів

5.3 Робота в колах реостата

Використана література

Вступ

З усіх видів енергії найчастіше застосовується електромагнітна, яку на практиці називають електричною.

Енергія – це кількісна міра руху та взаємодія всіх форм матерії.

Для будь-якого виду енергії можна назвати її носія. Наприклад, механічною енергією володіє вода, що падає на лопаті гідротурбіни, заведена пружина; тепловою – нагрітий газ, пара, гаряча вода. Носієм електричної енергії є електромагнітне поле, яке виявляється за силовою дією на електрично заряджені частини.

Широке використання електричної енергії пояснюється можливістю ефективного перетворення її на інші види енергії (механічну, теплову, світлову, хімічну) з метою приведення в дію машин і механізмів, одержання тепла і світла, зміни хімічного складу речовини, виробництва і обробки матеріалів тощо.

Перетворення електричної енергії на механічну за допомогою електродвигунів дає змогу найбільш зручно, технічно досконало й економічно ефективно приводити в рух численні робочі машини та механізми (металорізальні верстати, прокатні стани, підіймально-транспортні машини, насоси, вентилятори, швейні та взуттєві машини, молотилки, зерноочищувальні, борошномельні тощо).

Електродвигун робочих машин дає змогу не лише механізувати, але й максимально автоматизувати силові процеси, оскільки електродвигун дозволяє в широких діапазонах регулювати потужність і швидкість приводу.

У багатьох технологічних процесах використовують перетворення електричної енергії на теплову та хімічну. Наприклад, електронагрівання та електроліз дає змогу одержувати високоякісні спеціальні сталі, кольорові метали та ін. При електротермічній обробці металів, гумових виробів, пластмас, скла, деревини одержують продукцію високої якості.

Електрохімічні процеси, що складають основу гальванотехніки, дозволяють одержувати антикорозійні покриття, ідеальні поверхні для відбивання променів і т.д.

Електроенергія є практично єдиним видом енергії для штучного освітлення. Завдяки використанню електричної енергії одержано вражаючі результати в галузі зв’язку, автоматики, електроніки, в керуванні і контролі за технологічними процесами.

У таких галузях як медицина, біологія, астрономія, геологія, математика та ін. Використовуються спеціалізовані електричні прилади, апарати, установки, які забезпечують їх подальший розвиток як в науковому, так і прикладному відношенні.

Важливе значення для розвитку науки і техніки має використання комп’ютерної техніки, яка є поширеним і високоефективним засобом наукових досліджень, економічних розрахунків у плануванні, керуванні виробничими процесами, діагностиці захворювань. Без неї не було б розвитку кібернетики, обчислювальної та космічної техніки.

Єдиним недоліком електричної енергії є неможливість її накопичення та зберігання впродовж тривалого часу. Запаси електроенергії в акумуляторах, гальванічних елементах і конденсаторах достатні лише для роботи малопотужних установок, причому терміни зберігання цих запасів обмежені. Тому електроенергія повинна бути вироблена в такій кількості, яка потрібна споживачу.

Глобальне використання електричної енергії при концентрації природних енергетичних ресурсів в окремих географічних районах зумовило необхідність передачі її на великі відстані, розподіл між електроприймачами у великому діапазоні потужностей.

Електрична енергія розподіляється по приймачах довільної потужності.

В автоматичній та вимірювальній техніці використовуються пристрої малої потужності (одиниці та частки вата). Разом з тим є електричні пристрої (двигуни, нагрівальні установки) потужністю в тисячі та десятки тисяч кіловат).

Для передачі й розподілу електричної енергії використовуються повітряні лінії електропередач, кабельні лінії, в цехах промислових підприємств – шинопроводи та електропроводи, які використовують з металевих приводів із алюмінію, сталі та міді. В проводах установлюється електромагнітне поле, яке несе енергію.

За наявності проводів поле досягає високої концентрації, тому передача здійснюється з високим коефіцієнтом корисної дії. При дуже високій напрузі між проводами починається короткий розряд, що призводить до втрат енергії. Допустима напруга має бути такою, щоб при заданому поперечному перерізі проводу втрати енергії внаслідок короткого розряду були незначними.

Електричні станції областей країни об’єднані високовольтними лініями передач і утворюють загальну електромережу, до якої приєднані споживачі. Таке об’єднання називається електросистемою. Енергосистема дає змогу нівелювати «пікові» навантаження у ранкові та вечірні години й безперебійно подавати енергію споживачам незалежно від місця їх розташування та оперативно перекидати енергію в ту зону, де споживання енергії в даний момент максимальне.

Безперечно, без електричної лінії неможливе нормальне життя сучасної цивілізації. Тому надзвичайно важливим є забезпечення високої надійності постачання електроенергії, раціональне використання, максимальне скорочення у процесі її використання, виробництва, передачі та розподілу.

Для уникнення «енергетичного голоду» та усунення шкідливого впливу на навколишнє середовище вчені шукають нові шляхи одержання електричної енергії, збільшення потужності й коефіцієнта корисної дії установок для прямого перетворення теплової, хімічної та сонячної енергії на електричну. Рівень розвитку продуктивних сил суспільства, здатність виробляти матеріальні блага і створювати кращі матеріальні умови для життя визначається рівнем виробництва і споживання електричної енергії.

Електрична енергія має дві чудові якості: вона може передаватися на великі відстані з порівняно малими втратами і може легко перетворюватися в інші види енергії.

Зростання масштабів споживання електричної енергії, загострення проблеми охорони навколишнього середовища значно активізували пошуки екологічно чистіших способів дослідження електричної енергії. У всьому світі проводяться дослідження способів освоєння термоядерної енергії, прямого безмашинного перетворення внутрішньої і хімічної енергії в електричну магнітогідродинамічні, термоелектричні й термоелектронні генератори, паливні елементи тощо.

Інтенсивно розробляються способи використання не паливної відновлювальної енергії – сонячної, вітрової, геотермальної, енергії хвиль, припливів та відпливів тощо.

Енергетична – одна з найпотужніших галузей народного господарства України. За розвитком енергетики визначають стан розвитку країни в цілому. Електроенергія сьогодні виробляється на електростанціях різного типу. В Україні працюють теплові, гідро, атомні, вітрові та іншого типу електростанції.

Найбільші теплові електростанції розміщені в Донбасі. Серед них найпотужнішими є Луганська, Миронівська, Старобишівська (по 2,4 млн. КВт кожна), Слов’янська (2,1 млн. КВт), Вуглегірська (3,6 млн. КВт), Курахівська і Штерівська. Тут діє потужна лінія електропередачі Донбас – захід України.

У Придніпров’ї, не зважаючи на дещо іншу сировинну базу і наявність гідроресурсів, виробництво електроенергії на теплових електростанціях також переважає. Тут працює Криворізька ДРЕС (13 млн. кВт), Придніпровська (2,4 млн. кВт) та Запорізька (3,6 млн. кВт). В Енергодарі розміщена Запорізька АЕС. Крім цього енергетичний потенціал доповнює три ГЕС на Дніпрі: Дніпровська (538 тис. кВт), Дніпродзержинська (352 тис. кВт) та Кременчуцька (625 кВт).

Потужні електростанції різного типу розміщені поблизу Києва – Трипільська ДРЕС (1,8 млн. кВт), Київська ГЕС (361,2 тис. кВт), Київська ГЕС (225 тис. кВт).