Федеральное агентство по рыболовству
Федеральное государственное образовательное учреждение
высшего профессионального образования
«Астраханский государственный технический университет»
«УТВЕРЖДАЮ»
заведующий кафедрой АТП
Есауленко В.Н.
«_____» _________ 2011 г.
Курсовой проект
«Расчет одноконтурной автоматической системы регулирования температуры печи котельного агрегата»
Пояснительная записка КП 220301.072676.2011
проект выполнил
ст.гр. ДИА-41 Югов С.Г.
руководитель к.т.н., доц. Кокуев А. Г.
Астрахань 2011 г.
Астраханский Государственный Технический Университет
Кафедра «Автоматизация технологических процессов»
Дисциплина «Теория автоматического управления»
Специальность «Автоматизация технологических процессов и производств»
Курс 4 Группа ИА-41 Семестр 7
ЗАДАНИЕ
на курсовой проект (работу) студента Югова С.Г.
1. Тема проекта (работы): расчет одноконтурной автоматической системы регулирования.
2. Срок сдачи студентом законченного проекта:
3. Исходные данные к проекту: кривая разгона объекта регулирования по каналу регулирующего воздействия.
4. Содержание расчетно-пояснительной записки (перечень подлежащих разработке вопросов): 1. Передаточная функция объекта управления; 2. Расчет и построение переходной функции; 3. Получение аппроксимирующих передаточных функций для объекта управления; 4. Расчет и построение частотных характеристик объекта управления; 5. Расчет оптимальных настроек регулятора методом расширенных частотных характеристик; 6. Расчет и построение КЧХ замкнутой системы; 7. Построение переходного процесса по возмущению в системе регулирования приближенными методами; 8. Оценка качества переходного процесса по возмущению.
5. Перечень графического материала: частотные характеристики объекта управления; переходные процессы по каналам управления и возмущения; схема моделирования; кривая настроек регулятора; КЧХ замкнутой системы регулирования.
6. Дата выдачи задания:
Руководитель к.т.н., доц. Кокуев А.Г.
Выполнил Югов С.Г.
Календарный план
Наименование этапов курсового проекта (работы) | Срок выполнения этапов проекта (работы) | Примечание |
1 | Получение задания | 6.09.2010 |
2 | Введение | 12.09.2010 |
3 | Краткие теоретические сведения | 16.09.2010 |
4 | Расчет одноконтурной АСР | 8.10.2010 |
5 | Заключение | 22.10.2010 |
6 | Список литературы | 25.11.2010 |
7 | Графическая часть | 26.01.2011 |
Студент
Руководитель
Введение
Современные автоматизированные системы управления техническими процессами требуют значительного количества и разнообразия средств измерений, обеспечивающих выработку сигналов измерительной информации в форме, удобной для дистанционной передачи, сбора, дальнейшего преобразования, обработки и передачи.
В настоящее время существует большое число различных по своему назначению систем автоматического регулирования. Одни из них поддерживают заданную температуру, давление, расход жидкости или газов в объектах регулирования, другие изменяют эти параметры по различным законам.
Автоматические системы применяют и для управления скоростью вращения гидравлических и паровых турбин, дизелей, регулирования напряжения на электростанциях. Их используют также для регулирования мощности в ядерных энергетических реакторах, удержания электронного пучка в линейных ускорителях, регулирование тока в физических установках.
Автоматизация - это применение комплекса средств, позволяющих осуществлять производственные процессы без непосредственного участия человека, но под его контролем. Автоматизация производственных процессов приводит к увеличению выпуска, снижению себестоимости и улучшению качества продукции, уменьшает численность обслуживающего персонала, повышает надежность и долговечность машин, дает экономию материалов, улучшает условия труда и техники безопасности.
Автоматизация агрегатов включает в себя автоматическое регулирование, дистанционное управление, технологическую защиту, теплотехнический контроль, технологические блокировки и сигнализацию.
Автоматическое регулирование обеспечивает ход непрерывно протекающих процессов в парогенераторе (питание водой, горение, перегрев пара и др.)
Системы управления современными химико-технологическими процессами характеризуется большим числом регулируемых параметров. Так, что контуров регулирования сложных химико-технологических комплексов может достигать нескольких сотен.
В качестве регуляторов в подавляющем большинстве систем управления в нефтехимии, нефтепереработке, энергетике, металлургии и др. отраслях промышленности России и зарубежных стран в основном используются так называемые типовые промышленные регуляторы П-, ПИ- и ПИД-законы регулирования. Широкий диапазон изменения настроечных параметров типовых регуляторов позволяет использовать их для управления процессами с различной инерционностью, обеспечивает их взаимозаменяемость, удобство в эксплуатации и, в конечном счете, надежность систем управления.
Несмотря на развитие теории оптимального управления, разработку серийных регуляторов с переменной структурой, типовые законы регулирования по-прежнему составляют значительное большинство в системах управления промышленными процессами. В автоматизированных системах управления технологическими процессами (АСУТП), реализованных на основе мини- и микро-ЭВМ, доля типовых законов (алгоритмов) все еще велика, в особенности на нижних уровнях управления. В числе алгоритмов управления, реализуемых микропроцессорными контроллерами типа «Ремиконт», ПИ- и ПИД-законы являются одними из основных. В современных микропроцессорных системах Микро-Z и МОД-300 управление на нижнем уровне в значительной степени также осуществляется по типовым законам, реализованным цифровым способом.
Указанными обстоятельствами объясняется внимание, уделяемое проблеме расчета настроечных параметров типовых регуляторов учебными программами вузов соответствующих специальностей. Значительная часть существующих в настоящее время промышленных АСР являются одноконтурными. Это объясняется целым рядом причин. Но последнюю роль играют в этом отсутствие надежных технических средств и сложность алгоритмов расчета, требующих большого объема информации. В то же время широко применяемые на практике каскадные АСР, системы с дифференцированием промежуточной переменной и другие в силу специфики их динамических свойств приводятся к одноконтурным и рассчитываются в 2 этапа как одноконтурные.
Это же относится и к многомерным системам, расчет настроек которых во многих случаях сводится к многократному расчету приведенных одноконтурных. Таким образом, методы и алгоритмы расчета настроек одноконтурных АСР, рассматриваемые в пособии, являются основой расчета систем более сложной структуры. К настоящему времени разработано достаточно большое число приближенных и точных методов и методик расчета настроек.
Отдельную группу составляют приближенные методы (экспресс методы), позволяющие по минимуму информации о динамике процесса определить параметры настройки регулятора.
Точные методы, использующие полную информацию о динамике процесса, требуют определенных вычислительных затрат и, как правило, обеспечивают минимум некоторых критериев оптимальности.
Понятие о котельной установке
Паровым котлом называется комплекс агрегатов, предназначенных для получения водяного пара. Этот комплекс состоит из ряда теплообменных устройств, связанных между собой и служащих для передачи тепла от продуктов сгорания топлива к воде и пару. Исходным носителем энергии, наличие которого необходимо для образования пар из воды, служит топливо.
Основными элементами рабочего процесса, осуществляемого в котельной установке, являются:
1) процесс горения топлива,
2) процесс теплообмена между продуктами сгорания или самим горящим топливом с водой,
3) процесс парообразования, состоящий из нагрева воды, ее испарения и нагрева полученного пара.
Во время работы в котлоагрегатах образуются два взаимодействующих друг с другом потока: поток рабочего тела и поток образующегося в топке теплоносителя. В результате этого взаимодействия на выходе объекта получается пар заданного давления и температуры.
Одной из основных задач, возникающей при эксплуатации котельного агрегата, является обеспечение равенства между производимой и потребляемой энергией. В свою очередь процессы парообразования и передачи энергии в котлоагрегате однозначно связаны с количеством вещества в потоках рабочего тела и теплоносителя.
Горение топлива является сплошным физико-химическим процессом. Химическая сторона горения представляет собой процесс окисления его горючих элементов кислородом, проходящий при определенной температуре и сопровождающийся выделением тепла. Интенсивность горения, а так же экономичность и устойчивость процесса горения топлива зависят от способа подвода и распределения воздуха между частицами топлива. Условно принято процесс сжигания топлива делить на три стадии: зажигание, горение и дожигание. Эти стадии в основном протекают последовательно во времени, частично накладываются одна на другую.
Расчет процесса горения обычно сводится к определению количества воздуха в м3, необходимого для сгорания единицы массы или объема топлива количества и состава теплового баланса и определению температуры горения.
Значение теплоотдачи заключается в теплопередаче тепловой энергии, выделяющейся при сжигании топлива, воде, из которой необходимо получить пар, или пару, если необходимо повысить его температуру выше температуры насыщения. Процесс теплообмена в котле идет через водогазонепроницаемые теплопроводные стенки, называющиеся поверхностью нагрева. Поверхности нагрева выполняются в виде труб. Внутри труб происходит непрерывная циркуляция воды, а снаружи они омываются горячими топочными газами или воспринимают тепловую энергию лучеиспусканием. Таким образом, в котлоагрегате имеют место все виды теплопередачи: теплопроводность, конвекция и лучеиспускание. Соответственно поверхность нагрева подразделяется на конвективные и радиационные. Количество тепла, передаваемое через единицу площади нагрева в единицу времени носит название теплового напряжения поверхности нагрева. Величина напряжения ограничена, во-первых, свойствами материала поверхности нагрева, во-вторых, максимально возможной интенсивностью теплопередачи от горячего теплоносителя к поверхности, от поверхности нагрева к холодному теплоносителю.