Тиск на ділянці:
2. Шоста ділянка являється каналом конічно-кільцевого типу з конічною щілиною.
Коефіцієнт геометричної форми:
Тиск на ділянці:
1. Сьома ділянка являється каналом кільцевого типу.
Коефіцієнт геометричної форми:
Тиск на ділянці:
2. Восьма ділянка являється каналом конічно-кільцевого типу з конічною щілиною.
Коефіцієнт геометричної форми:
Тиск на ділянці:
1. Дев'ята ділянка являється каналом конічно-кільцевого типу з конічною щілиною.
Коефіцієнт геометричної форми:
=Тиск на ділянці:
4.2Розрахунок циліндричної гвинтової пружини малого кроку
Знаходимо напругу та деформацію при осьовому розтягу та стиску циліндричної пружини, навитої з прутка циліндричного перетину діаметром d(рис.1). Конструктивно пружини розтягу та стиску відрізняються оформленням їх кінців, але кінцеві витки в розрахунках на міцність не враховуються.
Циліндричні пружини характеризуються середнім діаметром витка D, числом витків n, кутом підйома витка α та кроком пружини h.
Найбільш поширені у техніці пружини мають невеликий кут підйому гвинтової лінії(α≤5).
У пружинах малого кроку можна нехтувати підйомом витків і рахувати довжину витка приблизно рівною πD, а сам виток - розташованим в плоскості, нормальній до осі пружини. Але у такому разі, перетин прутка пружини плоскістю, що містить її вісь, можна розглядати як її поперечний перетин. Вказані допущення покладені в основу наближеного розрахунку пружин.
Розділимо пружину осьовим перетином на дві частини і відкинемо, одну з них. З умови рівноваги частини, що залишилася, виходить, що внутрішні дотичні сили пружності в перетині пружини приводяться до перерізаючої сили Q=P і моменту Mk=PD/2.
Дотична напруга, викликана крученням, досягає максимуму в контурних точках перетину, а напруга від перерізаючої сили можна в першому наближенні вважати рівномірно розподіленими по плоскості перетину. У точці А контура перетину сумарна дотична напруга, як видно з мал. 7.19, досягає найбільшої величини
Чи
Для більшості пружин відношення d/2D - величина мала в порівнянні з одиницею. Це говорить про те, що основним виглядом деформації для пружин є кручення, а зрізом можна нехтувати і обчислювати напругу в пружині по формулі:
Зміна подовжніх розмірів λ(мал. 7.20) зручно визначити енергетичним методом, прирівнюючи роботу А статично прикладеної сили Р потенційної енергії деформації U пружини. Робота зовнішніх сил A=Pλ/2, а потенціальна енергія накопичується, головним чином, за рахунок кручення прутка і тому може бути обчислена за формулою (7.15).
Враховуючи, що крутний
та момент інерції по довжині прутка не змінюються, а довжина прутка l=πdn, отримуємоПрирівнюємо А та U , знаходимо
4.2.1Числовий розрахунок циліндричної гвинтової пружини малого кроку
4.2.1.1 Фасувальні пристрої машин: Т1-ВРА-6А ,Т1-ВР2А-6
Максимальна дотична напруга:
Крутний момент:
=100*0,024/2=1,2Момент інерції:
Потенційної енергії деформації U:
Зміна подовжніх розмірів λ:
4.2.1.2 Фасувальний пристрій машини ДАМ
Максимальна дотична напруга:
Крутний момент:
= /2=12,8Момент інерції:
Потенційної енергії деформації U:
Зміна подовжніх розмірів λ:
4.3Розрахунок повітряної трубки
По способах гідравлічного розрахунку трубопроводи ділять на дві групи: прості і складні. Простим називають трубопровід, що складається з однієї лінії труб, хоч би і різного діаметру, але з однією ж витратою по дорозі; всякі інші трубопроводи називають складними.
При гідравлічному розрахунку трубопроводу істотну роль грають місцеві гідравлічні опори. Вони викликаються фасонними частинами, арматурою і іншим устаткуванням трубопровідних мереж, які приводять до зміни величини і напряму швидкості руху рідини на окремих ділянках трубопроводу (при розширенні або звуженні потоку, в результаті його повороту, при протіканні потоку через діафрагми, засувки і так далі), що завжди пов'язане з появою додаткових втрат натиску . Основні види місцевих втрат натиску можна умовно розділити на такі групи:
- втрати, пов'язані із зміною перетину потоку;
- втрати, викликані зміною напрями потоку. Сюди відносять різного роду коліна, косинці, відведення, використовувані на трубопроводах;
- втрати, пов'язані з протіканням рідини через арматуру різного ті-па (вентилі, крани, зворотні клапани, сітки, відбори, дросель-клапани і так далі);
- втрати, пов'язані з відділенням однієї частини потоку від іншої або злиттям двох потоків в один загальний. Сюди відносяться, наприклад, трійники і отвори в бічних стінках трубопроводів за наявності транзитної витрати.
4.3.1Визначення оптимального діаметру повітряної трубки, економічний розрахунок
Для визначення оптимального діаметру повітряної трубки задаємося значеням швидкості руху повітря і обчислюємо розрахункові діаметри труб за формулою:
Результати розрахунку для всіх набутих значень швидкості приведені в таблиці 1.
Таблиця 1. Діаметр повітряної трубкидля різних дозуючих пристроїв
Пристрій | Т1-ВРА-6А | Т1-ВР2А-6 | ДАМ |
Швидкість руху рідини, м/с | 0,8 | 0,8 | 1,2 |
Діаметр труб, , м | 0.012 | 0.012 | 0.01 |
Для кожного розрахункового діаметру повітряної трубкиобчислюємо приведені витрати на один рік по формулі:
де
- експлуатаційні витрати, що включають амортизаційні відрахування, вартість електроенергії, обслуговування, поточних витрат і ін., грн.; - капітальні витрати, грн..;0,2 – нормативний коефіцієнт.
Вартість обслуговування і поточних витрат приблизно однакова для повітряної трубкирізного діаметру. Тому експлутаційні витрати приймаємо рівними амортизаційним відрахуваням:
Капітальні витрати включають вартість трубок і вартість монтажу повітряної трубки :Зразкова ціна 1 трубки приймається рівною 100 грн.