Уравнение равновесной линии в относительных массовых концентрациях:
(4)где m/- коэффициент распределения:
(5)m=1,08 - для смеси этанол-вода.
Рисунок 3. Зависимость между содержанием этанола в азоте и в воде:
1 - равновесная линия; 2 – рабочая линия.
Уравнение равновесной линии 1 (рисунок 1)
. (6)Отсюда
Отсюда уравнение рабочей линии 2 (рисунок 1)
имеет вид:Расход инертной части газа:
, где (7) - плотность инертного газа (азота) при условиях в абсорбере; - объемный расход инертного газа (азота) при условиях (t=20[0С];Р=760[мм.рт.ст]=0,1[МПа]) в абсорбере.
Приведем объемный расход азота к условиям в абсорбере:
, (8)где V0 - объемный расход инертной части газа (азота) при нормальных условиях (0[0С]; 760[мм.рт.ст]=0,1[МПа]), V0=3[м3/с] (по заданию) T0=273[К] t=20[0C].
Пересчитаем плотность инертного газа (азота) на условия в абсорбере:
, (9)где
- плотность азота при нормальных условиях (0[0С]; 760[мм.рт.ст] =0,1[МПа])t - температура в абсорбере ,[0С];
P0- нормальное давление (760[мм.рт.ст.]=0,1[МПа]);
P - давление в абсорбере, [МПа].
ρ0z=1,25046[кг/м3] - плотность азота при нормальных условиях.
T0=273[К]; t=20[0C]; P0=0,1[МПа]; P=0,1[МПа].
Определим массовый расход воздуха по формуле (7):
Производительность абсорбера по поглощаемому компоненту в соответствии с уравнением (2):
Отсюда из уравнения (2) определим расход поглотителя:
Тогда соотношение расходов фаз, или удельный расход поглотителя, составит:
1.2 Расчет движущей силы массопередачи
Движущая сила в соответствии с уравнением (1) может быть выражена в единицах концентраций как жидкой, так и газовой фаз. Для случая линейной равновесной зависимости между составами фаз, принимая модель идеального вытеснения в потоках обеих фаз, определим движущую силу в единицах концентрации газовой фазы:
, (10)где
и - большая и меньшая движущие силы на входе потоков в абсорбер и на выходе из него, кг/кг (рисунок 1 и 2). ; ,где
и - концентрации этанола в газе, равновесные с концентрациями в жидкой фазе (поглотителе) соответственно на входе в абсорбер и на выходе из него (рисунок 2).Средняя движущая сила процесса абсорбции:
1.3 Коэффициента массопередачи
Коэффициент массопередачи Ky находят по уравнению аддитивности фазовых диффузионных сопротивлений:
, (11)где
- коэффициенты массоотдачи соответственно в жидкой и газовой фазах, кг/(м2с); m – коэффициент распределения, кг/кг.Для расчета коэффициентов массоотдачи необходимо выбрать тип насадки и рассчитать скорости потоков в абсорбере. При выборе типа насадки для проведения массообменных процессов руководствуются следующими соображениями:
во-первых, конкретными условиями проведения процесса – нагрузками по пару и жидкости, различиями в физических свойствах систем, наличием в потоках жидкости и газа механических примесей, поверхностью контакта фаз в единице объема аппарата и т.д.;
во-вторых, особыми требованиями к технологическому процессу – необходимостью обеспечить небольшой перепад давления в колоне, широкий интервал изменения устойчивости работы, малое время пребывания жидкости в аппарате и т.д.;
в-третьих, особыми требованиями к аппаратурному оформлению – создание единичного или серийно выпускаемого аппарата малой или большой единичной мощности, обеспечение возможности работы в условиях сильно коррозионной среды, создание условий повышенной надежности и т.д.
В нашем случае насадка определена условиями задания:
Тип насадки: Кольца Рашига, керамические, упорядоченные.
1.4 Расчет скорости газа и диаметр абсорбера
Скорость газа в точке инверсии фаз ωп м/сек, соответствующая возникновению режима эмульгирования (считая на полное сечение колоны), определяется из уравнения (Павлов. с.380):
, (12)где σ – удельная поверхность насадки, м2/м3;
g – ускорение свободного падения, м/сек2;
VСВ – свободный объем насадки, м3/м3;
ρг ρж – плотность газа и жидкости, кг/м3;
μж – вязкость жидкости, спз;
A=-0,022 (для процесса абсорбции);
L и G – расход жидкости и газа, кг/ч.
Рабочая скорость газа (или пара) в обычных насадочных колонах (Павлов. с.380): ω=(0,6..0,85)ωп
В рассматриваемом проекте используются в качестве насадки керамические кольца Рашига упорядоченные, возьмем насадки размером 80X80X8, насадка из таких колец имеет следующие характеристики (см. таблица 1):
Таблица 1 Регулярные насадки "керамические кольца Рашига"
Насадки | σ | Vсв | dэ | ρ | число шт. в 1м3 |
50X50X5 | 110 | 0,735 | 0,027 | 650 | 8500 |
80X80X8 | 80 | 0,72 | 0,036 | 670 | 2200 |
100X100X10 | 60 | 0,72 | 0,048 | 670 | 1050 |
[м2/м3] | [м3/м3] | [м] | [кг/м3] |
ωп=2,6598[м/с]
Рабочая скорость газа в насадочном абсорбере:
Диаметр абсорбера находим по уравнению объемного расхода
, (13)где V - объемный расход газа при условиях в абсорбере, м3/с;
(определили по формуле 8)Принимаем стандартный диаметр абсорбера 1,4м.
1.5 Расчет плотности орошения и активной поверхности насадки
Плотность орошения (скорость жидкости) рассчитывают по формуле:
(14)где
- площадь поперечного сечения абсорбера, м2;L - массовый расход поглотителя (воды), кг/с;
ρж - плотность жидкости, кг/м3.