Выразим
Найдем коэффициент массопередачи по газовой фазе по формуле (11):
1.7 Расчет поверхности массопередачи и высоты абсорбера
Поверхность массопередачи в абсорбере определяется по формуле:
где M - производительность абсорбера по поглощаемому компоненту, кг/с;
Ky - коэффициент массопередачи по газовой фазе, кг/м2.с;
Высоту насадки, требуемую для создания этой поверхности массопередачи, рассчитаем по формуле :
где
σ - удельная поверхность насадки, м2/м3;
При U<0,003м3(м2с) для регулярной насадки, доля активной поверхности, может быть определено по приближенному выражению (Дытнерский 2-е изд 67стр).
Поставив численные значения, получим:
Плотность насадки составляет 670кг/м3, для сокращения действия массы насадок на решетки в скруббере используем два последовательно соединенных скруббера и соответственно высоту насадки для каждого скруббера принимаем 5м, следовательно общая высота насадки составит 10м.
1.8 Расчет гидравлического сопротивления абсорбера
Величина гидравлического сопротивления колонных аппаратов (ректификационных, абсорбционных, экстракционных) влияет на технологический режим работы аппарата.
При расчете колонн определяют гидравлическое сопротивление аппарата, для того чтобы выбрать оптимальные скорости фазовых потоков, обеспечивающих эффективный массообмен. По гидравлическому сопротивлению колонны подбирают вентилятор, компрессор или насос для подачи газов и жидкостей, обеспечивающих скорость движения фаз.
Величину
где
Гидравлическое сопротивление сухой насадки
где λ - коэффициент сопротивления насадки;
H - высота насадки, м;
Скорость газа в свободном сечении насадки определим из соотношения (1, c. 201):
где
Vсв - доля свободного объема, м3/м3.
λ - коэффициент сопротивления насадки, учитывающий суммарные потери давления на трение и местные сопротивления насадки.
Коэффициент сопротивления регулярных насадок находят по уравнению (1, с.18):
где:
где dВ и dН – соответственно внутренний и наружный диаметр кольца; dэ – эквивалентный диаметр.
1.9 Механический расчет основных узлов и деталей абсорбера
Механический расчет состоит из проверки на прочность отдельных узлов и деталей и сводится к определению номинальных размеров (толщины стенок обечаек, фланцев, днищ и т.д.), которые должны обеспечить им необходимую долговечность.
Расчет толщины цилиндрических обечаек с учетом прибавок производится по формуле (6, с. 413):
где s/ - номинальная толщина стенки, мм;
Так как
где
Коэффициент прочности сварного шва j = 1,0 при контроле шва на длине 100% и j =0,9 при 50% -ном контроле длины шва.
Исполнительную толщину стенки выбирают из стандартного ряда толщин труб или листового проката. Фактическая толщина должна быть больше расчетной величины и обеспечивать также необходимую жесткость обечайки.
Минимальная толщина цилиндрических обечаек без прибавки на коррозию и эрозию зависит от их диаметра:
Таблица 2
D, мм | от 150 до 400 | свыше 400 до 1000 | свыше 1000 до 2000 |
s, мм | 2 | 3 | 4 |
Номинальная расчетная толщина стенки s/ меньше минимальной толщины (таблица 2.), поэтому номинальную толщину принимаем равной 4мм, с учетом прибавок на коррозию и эрозию толщину стенки принимаем равной s=8мм.
Допускаемое давление в обечайке определим по формуле (6, с. 415):
где