Смекни!
smekni.com

Триботехнічні властивості: зносостійкість, зношування, тертя, покриття, залишкові напруги детонаційно-газових покриттів (стр. 14 из 22)

При випробуванні покрити з легованого нікелю зміни інтенсивності зношування, коефіцієнта тертя (мал. 3.4.14. а, б) при підвищенні температури більш виявлені чому в детонаційно-газових покрить з легованого ніхрому й залежать від складу й властивостей плівок окислів, які утворюються на поверхні тертя. Металографічні дослідження й рентгеноструктурний аналіз показали, що це пов'язане з утвором у процесі тертя різних типів плівок окислів, механізм руйнування яких неоднаковий. При температурах до 250°С на поверхні тертя утворюється плівка із суміші окислів Cr2O3 і б-Fe2O3, а останній при підвищенні температура до 350°С переходить у г-Fe2O3. Також при відзначеній температурі на робочій поверхні було виявлене існування ділянок окисла Mn. При наступному підвищенні температури відбувається утвір шпинельних фаз на основі борного ангідриду B2O3. Борний ангідрид активно взаємодіє з іншими окислами. Плівки, які утворюються за даних умов випробувань, запобігають адгезійній взаємодії й розвитку процесів пластичної деформації, активно знижуючи енергію трибоактировання. Цьому обумовлене протікання нормального процесу механохімічному зносу. Наступне підвищення температури при випробуванні виявляє тенденцію до росту інтенсивності зношування покрити на основі нікелю. Відомо, що інтенсивне окиснення поверхонь тертя приводить до збільшення товщини плівки окисла. У роботі [16] відзначається, що позитивний вплив окиснення поверхні тертя на її антифрикційні властивості до певного ступеня окиснення. У гетерогенних структурах при окисненні залежно від споріднення металу до кисню й швидкості дифузії металу в шарі окисла, відбувається збагачення або зубожіло плівки окислів елементами, які входять до складу покриття [17]. При даним проведеного рентгенофазового аналізу в інтервалі температур 450°С - 500°С відбувається утвір окислу Fe3O4, більш пишного й менш щільного чому г-Fe2O3. Продукти зносу виявляють собою порошок темно-бурого кольору. Відхилення від нормального процесу механохімічного зношування відбувається в результаті теплових перевантажень, які обумовлюють утвір локусів зв'язування за рахунок високого градієнта й інтенсивного збільшення температури в поверхневих шарах і породжують стан "термічної" пластичності. У процесі теплового зношування температурне поле поширюється в глибину матеріалу й у результаті нагрівання розм'якшуються контактні поверхні. При цьому інтенсифікує процес деформації поверхневого шару матеріалу покриття під плівкою окисла, яка обумовлює її руйнування й розвиток адгезійної взаємодії, яка веде до утвору металевих зв'язків. Інтенсивність зношування й коефіцієнт тертя, як випливає було очікувати, мав по даних умовах експеримента найбільші значення. При наступному збільшенні температури тепловий знос переходить у високотемпературне механохімічне зношування і яке зберігається як провідний вид зносу при росту температури випробувань до максимальної - 600°С. Зношування при цих температурах має механохімічну природу й характеризується деяким зменшенням значень інтенсивності зношування й коефіцієнта тертя завдяки високій швидкості протікання процесів окиснення на поверхнях тертя й тим самим забезпечується утвір суцільних плівок окислів. Зазначені плівки перешкоджають розвитку контактного зв'язування. Характерна мікроструктура поверхонь тертя для діапазону значень високотемпературного механохімічного зношування наведені на мал. . З наведених мікрофотографій видне, що поверхневі плівки в деяких місцях мають поперечні й поздовжні мікротріщини. Імовірно, що цей факт можна пояснити мікронапругами, які при певних випадках обумовлюють нестійкість їх пружного й пластичного стану. Тому що на границях зерен відбувається накопичення крайових дислокацій, які не встигають аналізувати , а це є причиною росту в цих місцях локальних концентрацій напруга до деякого граничного значення й утвору таким способом мікротріщин. Надалі руйнування плівок поверхневих шарів відбувається за рахунок їх м'якого викрашування з наступним видаленням продуктів зношування із зони тертя.

Проведені експерименти з детонаційно-газовими покриттями в умовах повітряного середовища показали, що залежно від температури спостерігається перехід від механохімічного зношування до теплового, а від теплового - знову до високотемпературного механохімічного. Зазначений перехід обумовлюється головним чином величиною коефіцієнта дифузії, який залежить від температури. У роботі [38] підтверджується, що основним механізмом, який приводить до аномального посилення процесів дифузії, дислокаційний. Умови терть, які обумовлюють тепловий знос, сприяють прояву зв'язування, тому що збільшується пластичність і полегшує можливість контакту трибоповерхонь, а це є необхідною умовою для прояву зв'язування. Інтенсивність теплового зношування в повітряному середовищі більше чим інтенсивність механохімічного зношування, тому що, в умовах підвищених температур у зоні контакту, у силу високоенергетичних впливів на активізованих поверхнях тертя має місце твердофазна хімічна взаємодія. Такий тип взаємодії веде до утвору плівок вторинних структур, які, в умовах механохімічного зношування виявляють собою щільні й суцільні плівки окислів, а вони перешкоджають розвитку процесів контактного зв'язування й у результаті чого зменшується інтенсивність зношування й коефіцієнт тертя. Значення параметрів тертя й зношування детонаційно-газових покрить системи Fe-Mn-Cr-Al-B, які отримані при випробуваннях в умовах повітряного середовища, дозволяють рекомендувати їх для практичного використання у вузлах терть, які працюють при підвищених температурах (мал. 3.4.15). Як видне (крива 2) для покрити із твердого сплаву ВК15 при температурі 520 °С наступає зв'язування, тому що збільшення температури викликає інтенсивне окиснення карбіду вольфраму й розм'якшення єднальної основи (кобальту). Таким чином, стрімке зростання енергії термічної активації обумовлює зниження триботехнічних властивостей покриття.

При цьому активно розбудовується знос зв'язуванням, а це приводить до катастрофічного процесу, що ушкоджується. Відзначена обставина обмежує можливості застосування покрити із твердого сплаву на основі вольфраму ВК15 при підвищених температурах у повітряному середовищі. На мал.3.18 наведені мікрофотографії поверхні тертя покриття із твердого сплаву ВК15. Типовим є неприпустима, що ушкоджується і яка проявляється у виникненні локальних металевих зв'язків, деформації, руйнуванні, у наслідок налипання, намазування й переносу матеріалу покриття. При такому виді зношування швидкість процесу утвори металеві зв'язків перевищує швидкість інших процесів і стає головною.

Випробування детонаційно-газових покрить в повітряному середовищі при підвищених температурах довели високі зносостійкі властивості розробленого покриття. У такий спосіб детонаційно-газові покриття на основі заліза легованих Mn-Сr-Аl-В можуть бути використані у вузлах тертя, які працюють при підвищених температурах в окисному середовищі.

3.5 Визначення оптимального змісту дисульфіду молібдену в покритті

Для реалізації процесу тертя з мінімальними трибо технічними властивостями була здійснена наступна гетерогенізація багатокомпонентної структури на основі легованого заліза системи Fe-Мn за рахунок додаткового додавання до складу детонаційних покритий диспергированого дисульфіду молібдену (Патент 2000021109, МК ИС23С 14/14, В22. F9/00/. В.І. Колісник, О.І. Щепотьев, М.М. Мусієнко й ін. від 25.02.2000). Визначення оптимального змісту MoS2 (керована змінна) у легованому порошку заліза щодо інтенсивності зношування, здійснювалося дослідним шляхом (мал.3.19). Виходячи з науково-методологічних положень вивчення процесів тертя й зношування й запропонованої математичної моделі паралельно проводилися виміри адгезійної міцності зчеплення (σсц) і мікротвердості (Hμ) поверхневих шарів детонаційного покриття. У результаті експерименту були отримані залежність і побудована функція відкликання: