Смекни!
smekni.com

Коррозия на Оренбургском газоперерабатывающем заводе (стр. 3 из 6)

Таким образом, при эксплуатации коммуникаций и оборудования в условиях сероводородсодержащих сред, в случаях отсутствия эффективных противокоррозионных мер, возможно изменение коррозионно-механических свойств материалов, образование блистеров, расслоений и коррозионных трещин, вызывающих разрушение металлических конструкций.

Аварийное разрушение трубопроводов ведет, соответственно, к выбросу токсичного, содержащего H2S газа в атмосферу с нанесением значительного экологического ущерба окружающей среде. Риск коррозионного разрушения усиливается с ростом диаметра трубопровода из-за высокого давления транспортируемого по нему газа (6-8 МПа), создающего в его стенках (независимо от их толщины) значительные напряжения. Развитию сероводородного растрескивания и водородного расслоения также способствует кислотность транспортируемой среды, пропорциональная парциальному давлению pH2S. По общепринятому мнению, скорость всех видов коррозии трубных сталей очень мала при <р газа < 60 %. Однако в результате исследований, проведенных на ОГПЗ, установлено, что подверженность сталей сероводородному растрескиванию зависит не только от влажности газа, но и от свойств и структуры металла трубопровода и его напряженного состояния.

Изучение опыта эксплуатации ОГПЗ актуально прежде всего с точки зрения оценки причин и масштабов проблем, вызываемых сероводородной коррозией. С другой стороны, проблемы надежности оборудования и трубопроводов связанны не только с коррозией, но и с качеством их проектирования, строительства и эксплуатации, это важно с позиций оценки влияния на надежность указанных факторов. Поэтому представляется необходимым выяснить, какие факторы оказывают преобладающее влияние на работоспособность оборудования и трубопроводов ОГПЗ и, в частности, какое место среди факторов, снижающих уровень надежности, занимают проблемы коррозии. В процессе эксплуатации ОГПЗ неоднократно наблюдали повреждения трубопроводов и оборудования различного характера, сопровождавшиеся утечками газа и наносящие не только значительный материальный, но и экологический ущерб.

4. Оборудование и трубопроводы ОГПЗ

Оборудование Оренбургского ОГПЗ находится в эксплуатации с 1973 г. I очередь завода пущена в 1973 г. и к настоящему времени проработала 24 года. II очередь пущена в 1975 г., а III очередь - в 1978 г., т.е. даже оборудование III очереди находится в эксплуатации 20 лет. Всего находится в эксплуатации более 1,7 тысяч сосудов и аппаратов и более 400 км технологических трубопроводов. Условия эксплуатации оборудования различны. Давление - от 0 до 6472 кПа (64 кгс/см2). Температуры - от -10 до +425 °С. Рабочие среды - жидкие игазообразные, нейтральные, кислые и щелочные. Содержание H2S в некоторых средах - до 16 %.

Из 456 проконтролированных в 1993 г. "Техдиагностикой" сосудов в 32 обнаружена язвенная коррозия от 0,5 до 2,3 мм, в двух аппаратах глубина язв достигает 4,5-5 мм; в 23 сосудах выявлены несплошности, а в двух сосудах обнаружены расслоения и вздутия металла обечаек.

Как показал опыт эксплуатации оборудования ОГПЗ, коррозионное состояние аппаратов, контактирующих с кислыми газами при температурах выше 100 °С, определяется в основном частотой их остановок. При остановках в аппаратах конденсируются кислые среды различного состава, содержащие H2S, С02, S02, вызывающие интенсивную коррозию оборудования. Основной причиной коррозии оборудования установок производства серы, эксплуатирующегося при высоких температурах, является отсутствие или недостаточно эффективная продувка его инертным газом при остановках, что приводит к образованию агрессивного конденсата.

Трубные пучки теплообменного оборудования выходят из строя из-за того, что межтрубное пространство забивается солевыми отложениями, и из-за сквозной коррозии металла. Причиной язвенной коррозии ребойлеров регенераторов является" агрессивность гликолевого раствора, обусловленная разложением его при температуре выше 100 °С и накоплением в растворе органических кислот. Язвенная коррозия в области раздела жидкий и паровой фаз ребойлеров регенераторов аминового раствора обусловлена разложением при температуре выше 121 °С аминового раствора с увеличением его коррозионной активности.

В целях повышения надежности и эксплуатационной безопасности оборудования и трубопроводов ОГПЗ проведена (по схемам технологических линий переработки газа и межцеховых коммуникаций) оценка возможности попадания сероводородсодержащих сред в трубоповоды и аппараты некоррозионно-стойкого исполнения. Объекты, на которых возможен контакт сероводородсодержащих сред с некоррозионностойкими материалами, подвергли неразрушающему ультразвуковому контролю или заменили на коррозионно-стойкие. Недействующие аппараты и трубопроводы законсервировали, обеспечив их надежную защиту от сероводородсодержащих сред.

Лавинообразное разрушение корпуса теплообменника, находившегося под действием внутреннего давления, произошло в ноябре 1987 г., при остановке технологической линии. В момент, предшествующий разрушению, потока среды в межтрубном пространстве аппарата не было, однако в корпусе сохранялось рабочее давление (вероятнее всего жидкой фракции). Теплообменник представлял собой горизонтальный цилиндрический аппарат с двумя неподвижными трубными решетками, сферическими днищами и компенсатором на трубной части. Он рассчитан на эксплуатацию с некоррозионной средой под давлением в корпусе 3 МПа, в трубной части 3,8 МПа при температуре -18 °С. Корпус, днища и трубные решетки аппарата изготовлены из стали 09Г2С. Размеры теплообменника: длина (между трубными решетками) 5000 мм; диаметр 1200 мм; толщина стенки корпуса 20 мм. В соответствии с технологической схемой обвязки Т-231 теплообменник эксплуатировался при температуре -36 °С. На основании анализа результатов исследований установлено следующее. Зарождение и докритический рост трещины, вызвавшей разрушение корпуса теплообменника, произошли на оси кольцевого шва обечайки в зоне приварки штуцера входа этановой фракции. Трещина развивалась вдоль оси кольцевого шва, и при достижении критической длины (200 мм) произошел переход в лавинообразное разрушение с разветвлением трещины но трем направлениям: вдоль шва и в обе стороны поперек оси шва по основному металлу. Химический состав и механические свойства основного металла 09Г2С корпуса теплообменника в основном соответствовали требованиям НД. Температура перехода материала днища (Т50) в хрупкое состояние по данным серийных испытаний составила -20 °С. Для материала обечайки она составляет от 0 до -20 °С. При температуре -40 °С вязкая составляющая в изломе отсутствовала. Механические свойства металла швов и сварных соединений отвечали требованиям, предъявляемым НД к качеству сварных соединений сосудов и аппаратов.

В зоне зарождения и докритического роста трещины, вызвавшей лавинообразное разрушение теплообменника, обнаружены следующие недопустимые дефекты кольцевого шва: непровар в корне шва глубиной 1-3 мм на длине 205 мм, горячие трещины, пленочные шлаковые включения между корневым и первым заполняющим швом размером до 5x10 мм и глубиной до 1,5 мм.

Инициатором разрушения теплообменника явился непровар в корне шва. Развитию разрушения способствовало наличие указанных выше дефектов шва и низкотемпературное охрупчивание материала обечайки при температуре -36 °С. В целях повышения эксплуатационной надежности сосудов, работающих под давлением при отрицательных температурах, выбор материалов для работы в таких условиях должен производиться с учетом их хладостойкости.

На ОГПЗ после 12-20 лет эксплуатации оборудования обнаружены в процессе диагностирования следующие коррозионные повреждения:

1991 г – водородное расслоение металла двадцати труб d720х22 мм трубопровода PG 14.06.01 влажного сероводородсодержащего газа;

1993 г. - водородное расслоение металла четырнадцати труб d720x22 мм трубопровода PG 14.01.01 влажного сероводородсодержащего газа;

1995г. - водородное расслоение (с выходом на сварной шов) металла буллита 100 В01-35; водородное расслоение с зонами ступенчатого растрескивания металла сосуда 367В01 (факельная емкость);

1996г. - утонение стенки обечайки емкости 741Е01 вплоть до образования сквозных повреждений;

1997г. - утонение стенки обечайки (с исходной 15 мм до 6,2 мм) в районе люка-лаза конвертора 04R403; водородное расслоение металла факельного сепаратора;

1998г. - водородное расслоение патрубка "Е" буллита 100В01-11; водородное растрескивание шириной около 450 мм металла обечайки буллита 100В01-28; водородное расслоение площадью около 6600 мм2 металла обечайки буллита 100В01-31; водородное расслоение и коррозионные повреждения сепаратора кислого газа 2У50В01; утонение стенок до отбраковочных значений входных сепараторов С-190-1 и С-190-2; недопустимое утонение стенок обечаек и днищ распределительных камер теплообменников 1У, 2У 374Е-14.

По результатам технического диагностирования, освидетельствования и надзора за период с 1990 по 1998 гг. на ОГПЗ заменены 92 технологических аппарата и теплообменника, 32 секции агрегатов воздушного охлаждения и большое количество пучковтеплообменников (от 15 до 20 штук в год).

Только в 1998 г. проведено освидетельствование 465 аппаратов, контрольная диагностика 52 аппаратов и 3000 м трубопроводов. По результатам этих работ произведена замена 19 аппаратов, проведен ремонт 162 аппаратов, на которых отремонтировано 454 штуцера.