Жидкость в гидроприводе предназначена для передачи энергии и надежной смазки его подвижных элементов. Жидкость подвергается воздействию в широких пределах давлений, скоростей и температур.
Так как рабочее давление 2,5 МПа и рабочая температура 450 С, то рекомендуется применение масел с вязкостью 60-110сСт.
Опираясь на эти данные, выберем из таблицы 2.2 страница 6 («Расчет гидропривода») марку масла:
Индустриальное 20,ГОСТ 1707-51 для которого имеются следующие характеристики:
плотность 890 кг/м3, вязкость при температуре +500 С: 17…23 сСт, температура застывания -200 С, температура вспышки 1700С, пределы рабочих температур 0…900С.
Найдем кинематический коэффициент вязкости по формуле:
(1)где,
- кинематический коэффициент вязкости см2/c при температуре , ˚С; n – показатель степени, приведенный в таблице 2.1 в зависимости от вязкости, в градусах Энглера, при температуре +50˚С.Вязкость масла в градусах Энглера:
(2)отсюда n=1,99, следовательно, по формуле 1:
2.2 Определение рабочего давления
Рабочее давление в цилиндре гидродвигателя назначим ориентировочно от величины требуемого полезного усилия F:
так как номинальное усилие 4 кН, то в диапазоне F = 10-20 кН рекомендуется рабочее давление в диапазоне Рр (25-40)·105 Н/м2.
Выбор величины рабочего давления при проектировании гидропривода производится в соответствии с нормальным рядом давлений, установленным ГОСТом. При выборе, расчете и проектировании гидроприводов необходимо руководствоваться ГОСТ 15445-67 и МН 3610-625.
Из нормального ряда давлений примем рабочее давление Рр= 2,5 МПа, а пробное давление 3,8 МПа.
Рабочее давление определяет возможный длительный рабочий режим гидропривода, а на пробное давление производится его испытание.
3 Расчет основных параметров гидроцилиндров
3.1 Приближенный расчет основных параметров силового гидроцилиндра
Определим внутренний диаметр силового гидроцилиндра по формуле, мм:
, (3)где F – полезная нагрузка, приведенная к штоку; Рр – рабочее давление в цилиндре, принимаемое в зависимости от F.
По вычисленному диаметру D подберем ближайший нормализованный.
Ближайшим нормализованным размером является 50. Следовательно, примем D =50мм.
Далее определим диаметр штока d в зависимости от величины хода поршня.
Рабочий ход поршня равен S =50мм. Так как S<10D, т.е. 50<10·50=500 мм, то диаметр штока определим по формуле, мм:
(4)По вычисленному значению диаметра штока примем ближайший больший, согласно ГОСТу 6540-68.
Ближайшим является 16. Значит, примем
.3.2 Уточненный расчет основных параметров силового гидроцилиндра
В процессе работы силового гидроцилиндра часть рабочего давления затрачивается на преодоление сил трения в конструктивных элементах гидроцилиндра, силы противодавления, динамических нагрузок, возникающих при разгоне и торможении поршня гидроцилиндра.
Полезные и дополнительные нагрузки определяют величину усилия, развиваемого гидроцилиндром, Н:
, (5)
где,
– динамическая сила; – Статическая нагрузка.Статическая нагрузка определяется при установившемся движении поршня:
, (6)где F- полезная нагрузка, приведенная к штоку поршня;
– сила трения в конструктивных элементах; – сила противодавления.Определим величину каждого элемента, входящего в формулы, т.е.
, , .Сила трения в конструктивных элементах расходуется на преодоление механических сопротивлений – трение в манжетах, поршневых кольцах:
Сила трения уплотнения манжетами равна, Н:
, (7)где
– коэффициент трения, принимаемый для резиновых манжет = 0,03…0,032; – диаметр контактной поверхности (поршня); – длина контактной поверхности, мм; Рр – рабочее давление в гидроцилиндре.Длина контактной поверхности принимается в зависимости от диаметра поршня или штока по таблице 3.1.(«Расчет гидропривода»):
ширина уплотнения равна 7,5 мм для штока, для поршня равна 10.
, , (8)где
– толщина (радиальная) сечения набивки, мм.Зная, все эти данные мы можем определить силу трения уплотнения манжетами по формуле (7):
Число манжет определим из таблицы 3.2 («Расчет гидропривода»), опираясь на диаметр поршня и давление:
диаметру 50 мм и давлению 2,5 МПа соответствует числу манжет равным 3.
Силу трения для поршневых колец можно подсчитать по формуле, Н:
, (9)где
– коэффициент трения кольца о стенку цилиндра (примем равным 0,07 т.е. для быстрого движения); b – ширина поршневого кольца; Рр– рабочее давление в цилиндре; Рк – среднее удельное давление на поверхности цилиндра, создаваемое упругими силами (Рк = 0,6·105 Па); i – число поршневых колец. Ширину поршневого кольца выберем из таблицы 3.3 («Расчет гидропривода»):Так как диаметр поршня порядка 50 мм, то примем b = 2,8мм, глубина канавки равна 2,7 мм.
Число колец найдем по таблице 3.4 в зависимости от величины давления:
для диаметра 50 мм и давления 2,5 МПа число поршневых колец равно 2.
Зная все эти данные, найдем силу трения для поршневых колец с использование формулы (9):
Определим суммарное усилие трения цилиндра, Н:
(10)Определим силы противодавления, Н/м2:
Примем
.Сила противодавления определится, Н:
, (11)где
– площадь сечения поршня.Следовательно, решение формулы (11):
Подставляя данные в уравнение (6), определим статическую нагрузку:
(5.1),Динамическая сила, Н:
, (12)где,
– приведенная к поршню силового цилиндра масса, кг; – время ускорения или замедления движения, с; – изменение скорости, м/c. (13)где
– плотность стали, L=0,03.