Смекни!
smekni.com

Оптимизационные модели принятия решений (стр. 2 из 5)

Оптовые цены единицы продукции равны для П1 3 д.е., для
П2- 4 д.е. Какое количество продукции каждого вида должно производить предприятие, чтобы доход от реализации продукции был максимальным?

Решение

Очевидно, фирме требуется определить объемы производства каждого вида продукции в тоннах, максимизирующие доход в д.е. от реализации продукции, с учетом ограничений на спрос и расход исходных продуктов. Предположим, что предприятие изготовит

единиц продукции П1 и
единиц продукции П2. Поскольку производство продукции ограничено имеющимся в распоряжении предприятия сырьем каждого вида и спросом на данную продукцию, а также учитывая, что количество изготовляемых изделий не может быть отрицательным, получим следующую систему ограничений

Доход от реализации продукции (целевая функция) составит

Таким образом, данная простая задача сводится к максимизации целевой функции

при учете вышеприведенных ограничений.

Проведем решение задачи в Excel.

Введем данные на рабочий лист так, как показано на Рис 2.1.

Искомые значения переменных

будут располагаться в ячейках A10 и B10 соответственно, целевая функция – в ячейке E10.

Рис. 2.1

В ячейки A3, A4 введем левые части функций – ограничений: =2*A10+3*B10 и = 3*A10+2*B10 соответственно. В ячейку C10 введем левую часть третьей функции-ограничения: =A10-B10.

Далее, запускаем пакет Поиск решения (Сервис ® Поиск решения) и устанавливаем целевую и изменяемые ячейки, а также вводим необходимые ограничения (Рис.2.2)

Рис. 2.2 Окно диалога Поиск решения

Поиск решения дает ответ

Пример 2 .Использование мощностей оборудования

Предприятие имеет

моделей машин различных мощностей. Задан план по времени и номенклатуре:
- время работы каждой машины; продукции
- го вида должно быть выпущено не менее
единиц.

Необходимо составить такой план работы оборудования, чтобы обеспечить минимальные затраты на производство, если известны производительность каждой

- машины по выпуску
- го вида продукции
и стоимость единицы времени, затрачиваемого
-й машиной на выпуск
- го вида продукции
.

Другими словами, задача для предприятия состоит в следующем: требуется определить время работы время работы

- машины по выпуску
- го вида продукции
, обеспечивающее минимальные затраты на производство при соблюдении ограничений по общему времени работы машин
и заданному количеству продукции
.

Решение. По условию задачи машины работают заданное время

, поэтому данное ограничение можно представить в следующем виде

Ограничение по заданному количеству продукции имеет вид

Задача решается на минимум затрат на производство

В данной постановке задачи предполагается, что количество выпускаемой продукции должно быть, по крайней мере, не менее

. В некоторых случаях не допускается превышение плана по номенклатуре; очевидно в этом случае в ограничениях по количеству продукции необходимо использовать знак равенства.

Проведем решение задачи в Excel. Введем данные на рабочий лист так, как показано на Рис 2.3.

В ячейки B7:E7 введем формулы для ограничений по объему выпускаемой продукции

(

)

в диапазон ячеек F19:F21 – формулы для ограничений по времени работы машин

(

)

В качестве целевой ячейки выберем H11 и введем в нее формулу минимизируемой функции.

информационный оптимизация линейный модель


Рис. 2.3. Данные для решения примера 2

С помощью Поиска решения получим следующий ответ:

Время работы Xij
Машина 1 2 3 4
1 803,92 0 0 196,07
2 625 0 375 0
3 0 1000 0 0

Искомое значение минимальных затрат на производство составляет 725,32 д.е.

Следующие два рассматриваемых нами примера относятся к области целочисленной оптимизации.

Пример 3. Оптимизация производственной программы

Автомобилестроительный завод выпускает три модели автомобилей, которые изготавливаются последовательно в трех цехах. Мощность цехов составляет 300, 250 и 200 человеко-дней в декаду. В первом цехе для сборки одного автомобиля первой модели требуется 6 человеко-дней, второй модели 4 и третьей модели – 2 человеко-дня в неделю соответственно. Во втором цехе трудоемкость равна 3, 4 и 5 человеко-дней соответственно, в третьем – по 3 человеко-дня на каждую модель. Прибыль, получаемая от продажи автомобиля каждой модели, составляет соответственно 15, 13 и 10 тыс. д.е. Требуется построить модель оптимального плана и определить оптимальные количества моделей каждого типа, т.е. такие, при которых прибыль завода будет максимальной.

Решение. Пусть

- количество выпускаемых автомобилей
-й модели в течение декады (
). Модель может быть описана следующей целевой функцией и системами ограничений

(2.5)

Решение

Введем данные на рабочий лист так, как показано на Рис. 2.4.

Искомые значения переменных

будут размещаться в ячейках A10:B10, целевая функция – в ячейке E10.

В ячейки A3:A5 введем левые части функций – ограничений, соответствующих второму, третьему и четвертому соотношению из (2.5).

С помощью Поиска решения получим ответ

Рис. 2.4 Данные для решения примера 3

Пример 4. Размещение проектов на предприятиях

Имеется

инвестиционных возможностей (вариантов проектов), которые можно реализовать на предприятиях. Эффективность реализации каждой инвестиции на каждом из
объектов
задана в таблице 2.2.

Таблица 2.2

Инвестиционные проекты (
)
Объекты (
)
I II III IV V
1 0.12 0.02 0.50 0.43 0.15
2 0.71 0.18 0.81 0.05 0.26
3 0.84 0.76 0.26 0.37 0.52
4 0.22 0.45 0.83 0.81 0.65
5 0.49 0.02 0.50 0.25 0.27

Целевой функцией, подлежащей оптимизации, является функция