Смекни!
smekni.com

Оптимизационные модели принятия решений (стр. 3 из 5)

где

- искомые распределения инвестиций по объектам.

Таким образом, по смыслу величина

есть ожидаемый результат от осуществления всех инвестиционных проектов. Ограничениями в данном случае являются следующие соотношения

означающие, что на каждом объекте может быть реализован лишь один проект, и

означающие, что должны быть реализованы все проекты. Необходимо распределить проекты по объектам таким образом, чтобы суммарная эффективность от реализации всех проектов была максимальной.

Решение

Введем данные на рабочий лист (Рис.2.5.).

В ячейку B17 введем формулу =СУММ(B12:B16) и скопируем эту формулу в диапазон C17:F17. Аналогично, введем формулу =СУММ(B12:F12) в ячейку G12 и скопируем ее в диапазон G13:G16. Введем в ячейку для целевой функции (I13) формулу

=СУММПРОИЗВ(B4:F8;B12:F16)

Рис. 2.5 Данные для решения примера 4

Для решения задачи с помощью Поиска решения необходимо ввести ограничения в соответствии с приведенным ниже рисунком.


Поиск решения дает ответ

(остальные
),
.

Нелинейные модели оптимизации в управлении

В настоящем разделе мы кратко рассмотрим задачи нелинейной оптимизации (называемые иначе оптимизационными задачами нелинейного программирования), математические модели которых содержат нелинейные зависимости от переменных. Источники нелинейности в задачах подобного типа могут относиться, в частности, к одной из двух категорий:

· Реально существующие и эмпирически наблюдаемые нелинейные соотношения, например непропорциональные зависимости между объемом производства и затратами, между количеством используемого в производстве компонента и некоторыми показателями качества готовой продукции, между затратами сырья и физическими параметрами (давление, температура и т.п.) соответствующего производственного процесса, между выручкой и объемом реализации и т.п.

· Установленные (постулируемые) руководством правила поведения или задаваемые зависимости, например, правила расчета с потребителями энергии или других видов услуг, правила определения страховых уровней запаса продукции, гипотезы о характере вероятностного распределения рассматриваемых в модели случайных величин, различного рода договорные условия взаимодействия между партнерами по бизнесу и др.

В качестве примера можно рассмотреть формирование оптимальной производственной программы предприятия. По критерию затрат учитывается себестоимость единицы продукции, которая уменьшается при увеличении объема выпускаемой продукции, что приводит к нелинейному критерию эффективности. Нелинейные зависимости возникают также в ограничениях задачи при точном учете норм расхода ресурсов на единицу производимой продукции.

Вообще говоря, решение нелинейных задач по сложности значительно превосходит решение рассмотренных ранее задач линейной оптимизации. В связи с этим долгое время в практике экономического управления модели линейной оптимизации успешно применялись даже при наличии нелинейности. В одних случаях нелинейность была несущественна и ею можно было пренебречь, в других – проводилась линеаризация нелинейных соотношений или применялись специальные приемы, например строились, так называемые, аппроксимационные модели, благодаря чему достигалась требуемая адекватность. Тем не менее, часто встречаются задачи, для которых нелинейность является существенной и упомянутые выше методы аппроксимации неэффективны, в связи с чем, нелинейность необходимо учитывать в явном виде.

В отличие от задачи линейной оптимизации (линейного программирования), не существует одного или нескольких алгоритмов, эффективных для решения любых нелинейных задач. Какой-то алгоритм может быть эффективен при решении задач одного типа и неприемлемым для задач другого типа. В связи с этим разработаны алгоритмы для решения каждого класса (типа) задач. Следует иметь в виду, что даже программы, ориентированные на решение определенного класса задач, не гарантируют правильность решения любых задач этого класса и оптимальность решения следует проверять в каждом конкретном случае.

Перечислим некоторые наиболее употребительные методы решения задач нелинейной оптимизации (нелинейного программирования):

· Оптимизация нелинейной функции с ограничениями на неотрицательность значений переменных (наиболее широко используемыми моделями данного класса являются модели квадратичного программирования, в которых целевая функция является квадратичной функцией переменных

).

· Модели выпуклого программирования; в моделях данного класса целевая функция является вогнутой (или выпуклой), а функции-ограничения являются выпуклыми функциями. При данных условиях локальный максимум (или минимум) функции является также глобальным. При решении таких задач используется метод множителей Лагранжа, а также теорема Куна-Таккера.

· Сепарабельное программирование. В задачах данного класса целевая функция и функции-ограничения могут быть представлены в виде сумм отдельных компонент. Данные задачи могут быть сведены к задачам линейного программирования.

· Дробно-нелинейное программирование. В этих задачах производится максимизация (минимизация) целевой функции вида

· Если функции

линейны (задача дробно-линейного программирования), то задача сводится к линейной.

· Невыпуклое программирование. Задачи данного типа принадлежат к наименее изученным и наиболее сложным задачам нелинейной оптимизации. В данном случае целевая функция и (или) функции-ограничения не выпуклы. Надежных методов решения таких задач в настоящее время не существует.

Мы ограничимся рассмотрением лишь наиболее простых задач нелинейной оптимизации, не требующих использования сложных аналитических выкладок и анализа, - задач, которые могут эффективно решаться на базе табличного процессора Excel.

Задача нелинейной оптимизации в общем случае состоит в отыскании такого вектора неизвестных


который обращал бы в максимум (минимум) функцию

(2.6)

и удовлетворял бы системе ограничений:

, (2.7)

где на некоторые или на все переменные налагается условие неотрицательности.

Использование информационных технологий при решении задач нелинейной оптимизации

Процессор электронных таблиц Excel является мощным и достаточно эффективным средством решения задач нелинейной оптимизации. В качестве иллюстрации возможностей данного программного продукта рассмотрим решение нескольких задач, непосредственно связанных с процессом принятия (выработки) решений.

Пример 5

Рассмотрим следующую задачу. Предприятие располагает ресурсами двух видов сырья и рабочей силы, необходимыми для производства двух видов продукции. Затраты ресурсов на изготовление одной тонны каждого продукта, прибыль, получаемая предприятием от реализации тонны продукта, а также запасы ресурсов приведены в следующей таблице:


Таблица 2.3Параметры задачи

Ресурс Расход ресурса Запас ресурса
На продукт 1 На продукт 2
Сырье 1, т 3 5 120
Сырье 2, т 4 6 150
Трудозатраты, ч 14 12 400
Прибыль единицы продукта, тыс. руб./т 72 103

Стоимость одной тонны каждого вида сырья определяется следующими зависимостями:

тыс. руб. для сырья 1 и
тыс. руб. для сырья 2

где

- затраты сырья на производство продукции. Стоимость одного часа трудозатрат определяется зависимостью
, где
- затраты времени на производство продукции.

Вопросы

Сколько продукта 1 и 2 следует производить для того, чтобы обеспечить максимальную прибыль?

Какова максимальная прибыль?

Решение: Пусть

и
- объемы выпуска продукции 1 и 2 в тоннах. Тогда задача может быть описана в виде следующей модели нелинейного программирования