Решение
Введем данные на рабочий лист в соответствии с приводимым ниже рисунком.
Рис. 2.10 Данные для решения задачи о расположении объекта (координаты объекта локализованы в пределах круга определенного радиуса)
Целевая функция располагается в ячейке E11, искомые координаты объекта будут располагаться в ячейках B7, B8. В ячейку B12 введем функцию = B7^2+B8^2. Введем ограничение $B$12<=$C$11, учитывающее то обстоятельство, что объект не должен располагаться вне круга заданного радиуса. Поиск решения дает ответ
целевая функция .Пример 8. Формирование оптимального портфеля ценных бумаг
Требуется сформировать портфель минимального риска из двух видов ценных бумаг – “АРТ” с эффективностью 12% и риском 21,1 и “ВЕРМ” с эффективностью 5,1% и риском 8,3 при условии, что обеспечивается доходность портфеля не менее 8,9%. Коэффициент корреляции
равен 0,18.Вводные замечания. Портфель ценных бумаг представляет собой совокупность различных инвестиционных инструментов, собранных воедино для достижения конкретной инвестиционной цели вкладчика. В портфель могут входить ценные бумаги только одного типа, например акции или облигации, или различные инвестиционные ценности, такие как акции, облигации, депозитные и сберегательные сертификаты, недвижимость и т.д.
Главная цель в формировании портфеля состоит в достижении оптимального сочетания между риском и доходом для инвестора. Уменьшение риска достигается за счет того, что возможные невысокие доходы по одной бумаге будут компенсироваться высокой прибылью по другим бумагам. Минимизация риска достигается за счет включения в портфель бумаг широкого круга отраслей, не связанных тесно между собой, чтобы избежать синхронности циклических колебаний их деловой активности.
Для получения количественных характеристик портфеля могут использоваться следующие характеристики:
– доходность (эффективность) портфеля ценных бумаг, рассчитываемая по формулегде
– доли инвестиций, помещенных в каждый из видов активов; – ожидаемая ставка дохода по каждому виду активов. Риск портфеля (стандартное отклонение ставок дохода по портфелю) представляет собой квадратный корень из дисперсии портфельного дохода (дисперсию доходности портфеля называют его вариацией ), которая определяется по формулегде
– коэффициент корреляции доходов между i-м и j-м активом; риски отдельных видов ценных бумаг.Задача оптимизации заключается в том, чтобы определить, какая доля портфеля должна быть отведена для каждой из инвестиций так, чтобы величина ожидаемого дохода и уровень риска соответствовали целям инвесторов. Целевой функцией может быть минимизация риска при заданной доходности, или максимизация дохода при риске не выше заданного.
Решение. В случае всего двух видов активов формула для расчета риска упрощается и приобретает вид
Введем данные на рабочий лист в соответствии с Рис. 2.11.
Рис. 2.11.Данные для решения задачи о минимизации риска портфеля ценных бумаг
Формулу для расчета
введем в ячейку С6; формулу для значения доходности портфеля – в ячейку С7 (=СУММ(12*A3+5,1*B3)). Формула для минимизируемой целевой функции=КОРЕНЬ((A5*A3)^2+2*A3*B3*A5*B5*C5+(B5*B3)^2)
- в ячейку E5.
Используемые ограничения
· Значение
(ячейка C6) должно равняться единице.· Значение доходности портфеля ценных бумаг
(ячейка C7) должно быть не менее 8,9.Ответ
Минимальный риск при этом составляет