Как правило, итерационный процесс продолжается до тех пор, пока величины
Пример. Для матрицы попарного сравнения
вычислим с помощью итерационной процедуры максимальное собственное число и соответствующий ему собственный вектор. В качестве начального приближения возьмем первый столбец матрицы. Получим
Суммируя составляющие, найдем первое приближение для максимального собственного числа
Тогда
Вычисляя второе приближение, получим
Суммируя компоненты этого вектора, получим
Поэтому
Дальнейшие вычисления не меняют результат.
Приведем пример расчета в Excel матрицы попарных сравнений в случае несогласованной исходной матрицы.
Пример 2.
Исходная матрица попарных сравнений имеет вид
Легко убедиться в том, что данная матрица не является согласованной.
Введем расчетные формулы в соответствии с Рис. 6.3. Как и в предыдущем примере, итерационный расчет будем проводить при использовании в качестве начального приближения первого столбца исходной матрицы попарных сравнений.
Рис. 6.3 Формулы и исходные данные для решения примера 2
Расчет показывает (см. ниже), что в данном случае согласованные результаты получаются (с достаточно высокой точностью) уже после 2-3 итераций. После четвертой итерации результаты практически не изменяются. Таким образом, данный простейший алгоритм позволяет существенно упростить процедуру расчета матрицы попарных сравнений в случае, когда исходная матрица является несогласованной.
Результаты расчетов для случая несогласованной исходной матрицы попарных сравнений
Первое приближение | | | |||||
1 | 4 | 9 | 1 | 3 | 0,661 | ||
0,25 | 1 | 7 | X | 0,25 | = | 1,278 | 0,282 |
0,111111 | 0,142857 | 1 | 0,111111 | 0,258 | 0,057 | ||
4,536 | |||||||
Второе приближение | | | |||||
0,661 | 2,300 | 0,694 | |||||
0,282 | = | 0,845 | 0,255 | ||||
0,057 | 0,171 | 0,051 | |||||
| |||||||
| |||||||
Третье приближение | |||||||
0,694 | 2,176 | 0,695 | |||||
0,255 | 0,788 | 0,252 | |||||
0,051 | 0,165 | 0,053 | |||||
3,130 | |||||||
Четвертое приближение | | | |||||
0,695 | 2,177 | 0,694 | |||||
0,252 | 0,795 | 0,253 | |||||
0,053 | 0,166 | 0,053 | |||||
3,138044 |
Сложные экспертизы находят широкое применение при прогнозировании и планировании в экономике, политике, широкомасштабных научных исследованиях и т.п. Как правило, они не дают прямых указаний о предпочтительности выбора того или иного решения и не оценивают последствия различных решений. Главным предназначением сложных экспертиз является оценка осуществимости тех или иных явлений и событий, а также определение их вероятных сроков и последовательности свершения. Располагая информацией такого рода, ЛПР может найти решения, способствующие (или – при необходимости – препятствующие) появлению анализируемых событий. Вследствие чрезвычайной сложности исследуемых явлений и – как правило – их значительной удаленности во времени от проводимой экспертизы, намного более корректно говорить о вероятностях (шансах) реализации того или другого явления, а не о конкретных сроках его реализации.
Следует отметить, что к строгому математическому понятию вероятности экспертные оценки такого рода можно отнести лишь условно, т.к. речь идет не о массовых событиях, а, как правило, об уникальных. В связи с этим указанные экспертные оценки получили название интуитивных вероятностей. Интуитивные вероятности представляют собой своеобразную форму нечеткого представления экспертных оценок сложных ситуаций. Следует отметить, что нестрогость понятия интуитивной вероятности не означает ее “неполноценности” и ее использование дает результаты, хорошо согласующиеся с реальностью. Исчисление интуитивных вероятностей проводится по используемым в теории вероятностей правилам.
Использование экспертами интуитивных вероятностей вызывает необходимость формулировки самих вопросов в вероятностном смысле. Например, вместо вопроса “Когда произойдет событие?”, следует задать вопрос “Какова вероятность того, что событие произойдет до какого-то момента времени?”. Следует отметить, что часто даже в данной постановке эксперт или эксперты не в состоянии дать достаточно обоснованный ответ. В таких случаях проводят декомпозицию (расчленение) анализируемых явлений и событий на более простые, оценка которых не столь сложна. Далее обрабатывают полученные от экспертов оценки и на ее основе пытаются ответить на вопрос.
Таким образом, в основе сложных экспертиз лежит декомпозиция исходной сложной проблемы на составляющие, проведение по ним совокупности простых экспертиз с последующей обработкой полученных экспертных оценок. В настоящее время существует несколько типов сложных экспертиз, например, метод дерева целей, метод решающих матриц, метод “Дельфи” и ряд других. Мы ограничимся рассмотрением сложной экспертизы “Метод дерева целей”.
Исследуемое событие обозначим как
Как правило, события
Полученные в результате декомпозиции исходного события результаты представляют графически, причем события изображаются кружками, а связи между событиями – стрелками. В результате получается граф событий (Рис.6.4), по виду напоминающий перевернутое дерево (отсюда – дерево целей).