С позиции формирования фасонного контура нарезание резьбы с врезанием по биссектрисе угла профиля и с радиальным врезанием осуществляется по профильной схеме резания, а с боковым врезанием для одной из сторон впадин резьбы – по генераторной. Известно, что генераторная схема резания по сравнению с профильной характеризуется большей шероховатостью обработанной поверхности. Поэтому можно было ожидать, что при боковом врезании шероховатость поверхности резьбы, обработанной режущими кромками резца, не участвующими в резании, должна быть выше. Однако эксперименты этого не подтверждают.
Направление врезания резца при скоростях резания, соответствующих режущим возможностям твердого сплава, мало влияют на высоту микронеровностей и различные направления врезания в этом отношении не имеют существенных преимуществ друг перед другом.
5. Конструкции и геометрические параметры резцов
5.1 Конструкции резцов
При нарезании резьбы используются резцы как из быстрорежущих сталей, так и с пластинками твердых сплавов. Резцы из быстрорежущих сталей разделяются на стержневые, с приваренной режущей пластинкой или головкой и с резцовой вставкой, закрепленной в державке резца с помощью зажимного устройства.
Твердосплавные резьбовые резцы бывают с припаянной пластинкой, с механическим креплением перетачиваемой пластинки, с механическим креплением неперетачиваемой пластинки.
Резьбовые резцы с припаянной пластинкой твердого сплава просты по конструкции, но им в полной мере присущи все недостатки этого способа присоединения пластинки к корпусу инструмента. Поэтому в последнее время широкое распространение получили резцы с механическим креплением пластинок твердого сплава, которые значительно повышают стойкость резцов.
Широкое применение в токарных резцах неперетачиваемых многогранных пластинок, обеспечивающих помимо повышения стойкости быструю замену затупившейся режущей части, коснулось и конструкции резьбовых резцов.
Для уменьшения вспомогательного времени, затрачиваемого на пробные проходы после снятия со станка затупившегося резца и установки нового или переточенного, применяются взаимозаменяемые резцы. Для регулировки и установки резца в резцедержателе в державке предусмотрены резьбовые упоры. Настройку резца на необходимый размер производят вне станка в специальном приборе с помощью эталонного резца.
5.2 Теоретический профиль передней поверхности резьбового резца
Теоретический профиль передней поверхности резца совпадает с осевым профилем нарезаемой резьбы только при переднем угле резца, равном нулю. Если передний угол резца не равен нулю, то теоретический профиль находится с помощью коррекционного расчета.
Часто крепежную резьбу нарезают резцом с некорректированным профилем передней поверхности, у которого углы наклона сторон профиля равны углам осевого профиля резьбы. При использовании стандартных неперетачиваемых пластинок корректировка профиля передней поверхности вообще невозможна. При некорректированном профиле резца нарезанная резьба будет иметь некоторую угловую погрешность осевого профиля.
Осевой профиль резьбы, нарезаемой резцом с некорректированным профилем передней поверхности, становится несимметричным. Угловая ошибка осевого профиля резьбы равна разности углов некорректированного и теоретического профиля передней поверхности. Она увеличивается при увеличении абсолютного значения переднего угла резца. У резцов с пластинками из твердых сплавов значение переднего угла, как правило, не превышает плюс-минус десять градусов, что соответствует максимальной угловой ошибке в тридцать девять минут. Поэтому при нарезании крепежной резьбы резцами, значение переднего угла которых колеблется в указанном диапазоне, коррекционный расчет профиля передней поверхности можно не производить.
5.3 Геометрические параметры резца
Режущая часть резьбового резца для нарезания метрической резьбы характеризуется следующими геометрическими параметрами: углами между проекциями боковых режущих кромок резца на опорную плоскость и боковыми плоскостями резца; передним и задним углами, лежащими в секущей плоскости, перпендикулярной к вершинной режущей кромке; задними углами, лежащими в секущих плоскостях, перпендикулярно к проекциям боковых режущих кромок резца на опорную плоскость; углами наклона боковых режущих кромок резца, лежащих в плоскостях, проходящих через указанные кромки, перпендикулярно к опорной плоскости; нормальными передними углами, нормальными задними углами, лежащими в плоскостях, перпендикулярных к боковым режущим кромкам резца.
Вершинную режущую кромку выполняют в виде прямой линии или дуги окружности определенного радиуса.
5.4 Рабочие геометрические параметры резца
Вследствие того, что простое рабочее движение резца является составным, его рабочие геометрические параметры отличаются от статистических.
Если отличие рабочих задних углов от статистических значительно, то это необходимо учитывать при проектировании резцов.
5.5 Вершинная режущая кромка
Из режущих кромок резца вершинная находится в наиболее тяжелых условиях. У нее наибольшая толщина срезаемого слоя и наименьшее отношение ширины срезаемого слоя к толщине. Ограниченная масса вершины резца затрудняет отвод тепла от вершинной режущей кромки. Вследствие этого средняя теплонапряженность вершинной режущей кромки значительно выше, чем боковых. Таким образом, для повышения износостойкости резца необходимо максимально увеличить ее длину.
Если вершинная режущая кромка очерчена дугой окружности, то ее радиус должен быть максимально возможным. Для этого так же, как и при увеличении длины прямолинейной режущей кромки, может быть использована часть допуска на средний диаметр резьбы.
Заточка вершинной режущей кромки резца по дуге окружности повышает стойкость резца и предельное значение подачи, при которой происходит хрупкое разрушение вершины резца. Увеличение радиуса вершины режущей кромки при нарезании метрической резьбы позволяет повысить допускаемую скорость резания.
5.6 Материал режущей части и оптимальные геометрические параметры резцов
При нарезании резьбы на резьботокарных полуавтоматах и универсальных токарных станках, оснащенных резьбонарезающим устройством, применяются резцы с пластинками из твердых сплавов. Применение резцов из быстрорежущей стали оправдано только при нарезании резьбы на универсальных токарных станках вручную или когда нет возможности назначить скорость резания равную оптимальной скорости резания для твердого сплава.
Для резцов из быстрорежущих сталей, нарезающих метрическую и упорную резьбу на деталях из чугунов, углеродистых и легированных конструкционных сталей, используют стали нормальной теплостойкости Р18 и Р9. При нарезании резьбы на деталях из труднообрабатываемых сталей и сплавов, предел прочности на растяжение которых не превышает 1177-1275 МПа, применяются стали повышенной теплостойкости (Р9К5, Р9К10, Р9М4К8, Р14Ф4, Р6М5К5).
Для резцов с пластинками из твердых сплавов используются как одно-карбидные, так и двух карбидные сплавы. При нарезании метрической резьбы на деталях из серого и ковкого чугуна применяются сплавы ВК6 и ВК6М. Нарезание резьбы на деталях из углеродистых и легированных конструкционных сталей производится резцами из сплава Т15К6 при пределе прочности, меньшем 1079 МПа и сплава Т30К4 при пределе прочности, находящемся в интервале от 1079 до 1471 МПа. Выбор марки твердого сплава при нарезании резьбы на деталях из труднообрабатываемых материалов определяется группой обрабатываемости, к которой принадлежит сталь или сплав.
Высокую износостойкость при нарезании метрической резьбы на деталях из высокопрочных сталей показывают резцы с пластинками из оксидно-карбидной режущей керамики ВОК-60 и ВОК-63.
Поскольку прочность режущей части резцов, нарезающих упорную резьбу, значительно ниже, чем резцов для нарезания резьбы метрической, то для них применяются сплавы с несколько меньшим содержанием карбидов вольфрама и титана и большим содержанием кобальта. Однако для уменьшения пластического деформирования вершины резца, происходящего под действием высоких контактных напряжений и температур, применять высококобальтовые сплавы, такие как ВК8, Т5К10 и ТТ7К12, нельзя. Наилучшими сплавами, сочетающими достаточную прочность и формоустойчивость при нарезании резьбы на деталях из сталей с пределом прочности, меньшим 1716 МПа, являются сплавы Т15К6, ТТ10К8Б и ВК6М.
Невысокая прочность режущей части резьбовых резцов делает особенно целесообразным использование неперетачиваемых твердосплавных пластинок с износостойкими покрытиями. Пластинки из наиболее прочных сплавов, таких, например, как ВК8 или ТТ7К12, с нанесенными на них покрытиями из карбида или карбонитрида титана по износостойкости не уступают пластинкам из сплава Т15К6.
Несмотря на то, что режущие кромки резца, особенно боковые, срезают сравнительно тонкие слои материала, значения задних углов резца невелики. Это связано с малой прочностью вершинной части резца, которая уменьшается при увеличении задних углов. Прочность материала режущей части резца влияет на значение оптимального заднего угла. Чем меньшую прочность имеет твердый сплав, тем меньше должен быть оптимальный задний угол. Поэтому у резцов из быстрорежущих сталей задний угол больше, чем у резцов из твердых сплавов. Задние углы на вершинной и боковых режущих кромках резцов из быстрорежущих сталей лежат в пределах восьми – двенадцати градусов, уменьшаясь при увеличении прочности материала обрабатываемой детали. У резцов из твердых сплавов задние углы меньше и равны четырем – восьми градусам. Меньшие значения задних углов соответствуют большей прочности материала нарезаемой детали и меньшей прочности твердого сплава. При нарезании резьбы на деталях из материалов особо высокой вязкости значение задних углов увеличивают на два градуса.