Смекни!
smekni.com

Привод к скребковому конвееру (стр. 2 из 5)

Эквивалентное число зубьев шестерни

zV1= z1/ cos3β (2.22)

zV1=25/ cos 325º49´=34,5

zV= 101/ cos 325º49´=138,5

Коэффициент формы зуба

ΥF1=3,9; ΥF1=3,6 [3;с.185]

Принимаем коэффициенты

КFB=1,3

K=1,2 K=0,91

ΥВ =1- βº/140º=1-25º49´/140=0,818 [3;с.192]

Расчетное напряжение изгиба

σF2= ΥF1 ΥВFt/ b2 mnKKКFB (2.24)

σF2=3,9·0,818·2872/56·2·0,91·1,3·1,2=116 МПа

σF1= σF2 ΥF1 / ΥF2 =116·3,9/3,6=126 МПа (2.25)

σF1=116·3,9/3,6=126 МПа

Результаты расчетов сводим в таблицу 2

Таблица 2 – Параметры зубчатой цилиндрической передачи,мм

Проектный расчет
Параметр Значение Параметр Значение
Межосевое расстояние αW 140 Угол наклона зубьев β 25º49´
Модуль зацепления mn 2

Диаметр делительной окружности

шестерни d1

колеса d2

56

224

Ширина зубчатого венца:

шестерни b1

колеса b2

60

56

Число зубьев

шестерни z1

колеса z2

25

101

Диаметр окружностей вершин

шестерни dа1

колеса dа2

60

228

Вид зубьев шевронный зуб

Диаметр окружности

вершин

шестерни df1

колеса df2

51

223

Проверочный расчет
Параметр Допускаемое значение Расчетное значение Примечание
Контактное напряжение σ 466 МПа 447 МПа Контактная выносливость обеспечена

Напряжения изгиба σFО1

σFО2

504 МПа 126 МПа Изгибная выносливость зубьев обеспечена
450 МПа 116 МПа

Расчет клиноременной передачи

Выбор типа сечения ремня

По номограмме [1;с.123] принимаем сечение клинового ремня А нормального сечения

Определяем диаметра ведомого шкива d2

d2= d1u( 1-ε ) (2.26)

где, ε=0,015- коэффициент скольжения [1;с.81]

d1=100 мм [1;с.89]

d2=100·3,69(1- 0,015)=363,46 мм

Принимаем d2=355, по таблице К40 [1;с.449]

Уточняем фактическое передаточное число uф


uф= d2/ d1( 1-ε ) (2.27)

uф=355/100(1-0,015)=3,6

∆u= uф – u/ u·100%=3,6 – 3,69/ 3,69·100% =2,4 %≤3%

Определяем межосевое расстояние α, мм

α≥0,55(d1 + d2 ) +h(H) (2.28)

где, h(H)=8 – высота сечения клинового ремня по таблице К31 [1;с.440]

α≥0,55(100+355)+8=258,25

Определяем расчетную длину ремня LР

L=2α+π/2(d1 + d2 )+(d2 – d1)2/4 α (2.29)

L=2·258+3,14/2(100+355)+(355-100) 2/4·258=1293 мм

Принимаем L=1250 мм, по таблице К31[1;с.440]

Уточняем значение межосевого расстояния

α=1/8[2L-π (d2 +d1)+√[ 2L-π (d2 +d1)]2 -8(d2 – d1) 2] (2.30)

α=1/8[2·1250 – 3,14(355+100)+√[2·1250-3,14(355+100)] 2 -8(355-100) 2]=354 мм

При монтаже передачи необходимо обеспечить возможность уменьшения межосевого расстояния на 0,01 L=0,01·1250=12,5 мм для обеспечения надевания ремней на шкивы и возможность увеличения его на 0,025 L=0,025·1250=31,25 мм для увеличения натяжения ремней.

Определяем угол обхвата ремней ведущего шкива


α1 = 180º - 57º (d2 – d1)/α (2.31)

α1 = 180º- 57º (355- 100)354 - 57º =127º>120º

Определяем частоту пробегов ремня

U=u/L

U=4,97/1250=0,004 с -1 (2.32)

Определяем скорость ремня υ,м/с

υ=πd1n1/60·103 (2.33)

υ=3,14·100·950/60·103=4,97≤25 м/с

Определяем допускаемую мощность

Р=РоСРСαС1Сz (2.34)

где, Ро=0,67 кВт – допускаемая приведенная мощность, по таблице 5.2 [1;с.89]

СР=1 – коэффициент динамической нагрузки;

Сα=0,95 – коэффициент угла обхвата;

Сυ =1,04 – коэффициент влияния от натяжения от центробежных сил;

Сz=0,9 – коэффициент числа ремней в комплекте

С1=1 – коэффициент влияния отношения L/l[1;с.82]

Р=0,67·1·0,95·1,04·0,9=0,52 кВт

Определяем количество клиновых ремней


z=Рном/Р (2.35)

z=2,32/0,52=4,46 кВт

Принимаем z=4

Определяем силу предварительно натяжения ремня

Fo=850 Рном С1/ zυ Сα СР (2.36)

Fo=850·2,32·1,04/4·0,95·1·4,97=109 Н

Определяем окружную силу

Ft= Рном103

Ft= 2,32·103/4,97=466 Н (2.37)

Определяем силы натяжения ведущей F1 и ведомой F2 ветвей

F1= Fo+ Ft/2z (2.38)

F1=109+466/2·4=167 Н

Определяем силу давления ремней на вал

Fon=2 Foz·sin α1/2 (2.39)

Fon=2·109·4· sin127º/2=780 Н

Результаты расчета сводим в таблицу 3

Таблица 3 – Параметры клиноременной передачи,мм

Параметр Значение Параметр Значение
Тип ремня клиновой Частота прбегов в ремне U 0,004 с-1
Сечение ремня А Диаметр ведущего шкива d1 100
Количество ремней z 4 Диаметр ведомого шкива d2 355
Межосевое расстояние α 354 Максимальное напряжение σmax 10 МПа
Длина ремня L 1250 Предварительное натяжение ремня Fo 109 Н
Угол обхвата малого шкива α1

127º

Сила давления ремня на вал Fon 780 Н

3. Предварительный расчет валов редуктора

Предварительный расчет валов редуктора ставит целью определить ориентировочно геометрические размеры каждой ступени вала : ее диаметр и длину. Ведущий вал

(3.1)

=27,4 мм

где Т2=82,9 Нм, вращающий момент на валу

τ adm= 30 МПа

Принимаем диаметр выходного конца вала dв1=30 мм

Диаметр вала под подшипники принимаем dп1=35 мм

Рисунок 1 – Конструкция ведущего вала


вал ведомый

где Т3=321,7 Нм, вращающий момент на валу

τ adm= 30 МПа

Принимаем dв2=40 мм

Диаметр вала под подшипники принимаем dв2=45 мм

Диаметр под зубчатое колесо dк2=50 мм

Диаметр буртика d2=55 мм

Рисунок 2 – Конструкция ведомого вала

электродвигатель шпонка подшипник вал

Конструктивные размеры шестерни и колеса

Шестерня выполняется за одно целое с валом

d1=56 мм

dа1=60 мм

df1=51 мм

b1=60 мм


Колесо кованное

d2=224 мм

dа2=228 мм

b2=56 мм

Диаметр ступицы

dст=1,6 dк2

dст=1,6·50=80 мм

Длина ступицы

Lст=(1,2…1,5) dк2

Lст=(1,2…1,5)50=60..75 (3.2)

Принимаем Lст=70 мм

Толщина обода

δ=(2,5…4) mn (3.3)

δ=(2,5…4)2=5…8 мм

Принимаем δ=8 мм

Толщина диска (3.4)

С=0,3 b2

С=0,3·56=16,8

Принимаем С=18 мм


4. Эскизная компоновка

Компоновку проводят в2 этапа.1-ый этап служит для приближенного определения положения зубчатых колес и звездочки относительно опор для последующего определения опорных реакций и подбора подшипников.

Примерно посередине листа параллельно его длиной стороне проводим горизонтальную осевую линию, затем 2 вертикальные линии – оси валов на расстоянии αW=140 мм.

Вычерчиваем упрощенно шестерню и колесо в виде прямоугольников, шестерня выполнена за одно целое с валом, длина ступицы колеса равна ширине венца и не выступает за пределы прямоугольника.

Очерчиваем внутреннюю стенку корпуса. Принимаем зазор между торцом шестерни и внутренней стенкой корпуса А1 = 1,2 δ . Принимаем зазор окружности вершин зубьев колеса до внутренней стенки корпуса А = δ . Назначаем радиальные шарикоподшипники легкой серии.

Таблица – 4 Шарикоподшипники радиальные однорядные, мм ГОСТ 8338-75

УО подшипников d D В Грузоподъемность,кН
Сo Сor
207 35 72 17 22,5 13,7
209 45 85 19 32,2 18,6

5. Подбор и проверочный расчет шпонок

Для соединения вала с деталями передающих вращение, кручение принимаем призматические шпонки из стали имеющие σв≥600 МПа – сталь 45, по таблице 8.9 [4;с.171].Длину шпонки назначаем из стандартного ряда, так чтобы она была несколько меньше длины ступени.


Таблица5 – Шпонки призматические, мм ГОСТ 23360-78

Диаметр вала,d

Сечение вала

Глубина паза вала t1

Глубина паза

втулки t1

Фаска

º
30
5 3,3 0,25 –0,40
50
5 3,3 0,25 –0,40
40
5 3,3 0,25 –0,40

Вал ведущий, d=30 мм