Изучение кинетики вторичной рекристаллизации показало, что в медьсодержащей стали процесс аномального роста зерна при исследованных режимах обработки протекает полностью. Аномальный рост понижается после частичного растворения включений. Повышение скорости нагрева приводит к торможению как процессов выделения, так и процессов растворения, следовательно, смещению кинетических кривых вторичной рекристаллизации в область более высоких температур.
5. Механизация и автоматизация
Механизация и автоматизация производственных процессов являются основными направлениями в развитии технического прогресса. Работа современных термических цехов немыслима без механизации и автоматизации производственных процессов и широкого применения различной контрольно - измерительной аппаратуры [18].
Схема контрольно - измерительных приборов электропечей типа СГН – 16.25 – 3/12 – И1.: комплект электропечей состоит из четырех стендов и трех колпаков. Подача водорода и азота в каждую электропечь осуществляется с помощью вентилей с электромагнитными приводами. Необходимый вакуум в подколпаковом пространстве каждой печи создается при помощи вакуумного насоса. В процессе работы электропечей производится автоматическое регулирование и запись температуры печи с помощью электронных потенциометров, контроль процентного содержания водорода, кислорода, контроль влажности, контроль горения свечей в каждой электропечи, контроль падения давления водорода в электропечи. Контроль горения свечи осуществляется с помощью многоточечного электронного потенциометра. При прекращении горения свечи загорается соответствующая желтая лампа и звучит сирена.
Для определения процентного содержания кислорода используется газоанализатор типа ГДРП – 3, который подключается к соответствующей печи с помощью ручного вентиля.
Для определения процентного содержания водорода применяют два газоанализатора типа ТП – 1120, каждый из которых подключается к соответствующей печи с помощью ручного вентиля. Измерение влажности в электропечи осуществляются с помощью измерителя влажности типа ИВ – 439 – Х1, подключаемого с помощью ручного вентиля.
Контроль давления водорода в каждой из четырех электропечей осуществляется соответствующим сигнализатором давления, которые при наличии падения давления водорода в печи дают импульс на закрытие вентиля, подающего водород и открытие вентиля, подающего азот и одновременно импульс на звуковую и световую сигнализацию. Открытие затворов, подающих азот или водород в одну из электропечей возможно только при закрытом вакуумном затворе.
Каждая электропечь имеет три электрические зоны. Мощность первой и второй по 250 кВт, третьей – 150 кВт. Нагреватели впервой и второй зоны соединены в "треугольник", третья зона соединена в "звезду".
Нагреватели подсоединяются к блокам управления типа БУ 5127 – 53 А2А и БУ 5126 – 53 А2В, которые подключаются к сети переменного тока и устанавливаются на щитах станций управления ЩСУ – 1 и ЩСУ – 2.
Катушки контакторов, включающие нагреватели электропечи, питаются постоянным током 220 В, остальные цепи питаются переменным током с напряжением 380 В. Схемой предусмотрено ручное или автоматическое управление нагревателями. Ручное переключение нагревателей производится универсальным переключателем 25 УП. Автоматическое регулирование каждой зоны производится электронным потенциометром. Датчик – термопара: схемой предусмотрена световая сигнализация: при включенных нагревателях – красная лампа, при отключенных – зеленая.
Питание вакуумного насоса, обеспечивающего работу четырех электропечей, осуществляется от станции управления типа БУ 5120, подключенной к сети 380 В переменного тока.
Подключение к сети переменного тока с напряжением 380 В электродвигателя вакуумных насосов осуществляется автоматическими выключателями и рубильником. Автоматический выключатель устанавливается по одному на каждую электропечь, а рубильник приходится один на четыре электропечи.
Работа вакуумного насоса сигнализируется лампой белого цвета. Цепи управляются приводом насоса 220 В переменного тока.
Включение электродвигателя осуществляется контакторами с помощью кнопок управления.
Положение вакуумных затворов сигнализируется лампами красного и зеленого цвета. Схемой предусмотрена блокировка, разрешающая открытие затвора для подключения системы к вакуумному насосу только при закрытых затворах, подающих азот или водород. При открытии вентиля подачи водорода автоматически подается напряжение на нагнетательный элемент свечи. Контроль горения свечей осуществляется с помощью термопары и потенциометра. Контроль процентного содержания водорода, кислорода и влажности осуществляется с помощью газоанализаторов. Питание газоанализаторов производится от сети 220 В переменного тока. Защита цепи управления производится, автоматическим выключателем типа 14 ВА. Для создания необходимого расхода газа через датчики газоанализаторов применяются побудители расхода типа ПМГ – 1. Для подачи напряжения на цепи управления установлен контактор типа 53 СП, выключаемый кнопками управления типа 68 КУ, 69 КУ. Цепи управления каждого газоанализатора подключается к общим цепям управления с помощью системных розеток, и отключаются тумблерными выключателями [19].
Контроль наличия напряжения на цепях управления осуществляется сигнальными лампами красного цвета.
Отбор газа на анализ от той или иной электропечи производится газоанализатором с помощью ручных вентилей. Соединение датчиков с вторичными приборами газоанализаторов необходимо производить экранированным проводом в соответствии с монтажно-эксплуатационными приборными инструкциями.
Научная организация труда (НОТ) базируется на достижениях науки и передовом опыте, целью которого является наилучшее соединение людей и техники в производственном процессе, обеспечение эффективного использования материальных и трудовых ресурсов при непрерывном повышении производительности труда.
Главные направления научной организации труда, применяемые для проекта:
· Лучшая организация рабочего места, включающая лучшее обеспечение необходимыми материалами для бесперебойной работы;
· Совершенствование обслуживания рабочих мест, уменьшение времени простоев при выдаче заданий и приеме продукции;
· Отбор, улучшение и распространение наиболее рациональных трудовых приемов. Передача навыков, опыта, методов работы квалифицированных рабочих новичкам;
· Создание благоприятных условий труда путем автоматизации и механизации производственных процессов;
· Рационализация режимов труда и отдыха;
· Совершенствование нормирования труда;
· Укрепление трудовой дисциплины.
Производственный участок возглавляет начальник участка – старший мастер. Он является оперативным руководителем и организатором работы. Старший мастер подчиняется непосредственно заместителю начальника цеха и отвечает за производственно - хозяйственную деятельность отделения высокотемпературного отжига [20].
В соответствии с действующими положениями старший мастер имеет право:
· Производить расстановку рабочих на рабочие места;
· Принимать на работу и освобождать от работы рабочих с утверждения начальника цеха;
· Премировать рабочих из фонда премирования, выделенного в распоряжение мастера;
· Налагать в установленном порядке дисциплинарные взыскания за нарушение дисциплины.
Главными задачами мастера являются: строгое соблюдение технологии, точное выполнение режимов термообработки, обеспечение высокого качества, надежности и долговечности изделий.
Непосредственно у старшего мастера находится в подчинении старший термист. Он руководит загрузкой и разгрузкой печей, их пуском и остановкой, включением и выключением вакуумных насосов; устанавливает и регулирует режим отжига металла. Основной задачей старшего термиста является организация работы участка колпаковых печей в соответствии с требованиями технологии и инструкции по работе оборудования.
Сменному мастеру и старшему термисту подчиняется бригада рабочих, которую возглавляет бригадир. Он отвечает за состояние оборудования и работу бригады на вверенном ему участке.
Начальник отделения и сменные мастера поддерживают тесную связь с технологами цеха, работниками ОТК и цеховой экспресс лабораторией, являющейся филиалом общезаводской металловедческой лаборатории.
Общая сумма капитальных вложений в балансовую стоимость основных фондов [17]
КОС = КЗ + КС + КСО + КР + КПР,(33)
где КЗ – капитальные затраты на возведение здания, сантехнику, руб.;
КС – капитальные затраты на строительство сооружения, руб.;
КСО – капитальные затраты на силовое оборудование и силовые машины, руб.;
КР – капитальные затраты на рабочие машины и рабочее оборудование, руб.;
КПР – капитальные вложения в прочие основные фонды, руб.
Расчет балансовой стоимости зданий и бытовых помещений производится по укрупненным показателям нормативной стоимости 1 м2 зданий.
Общий объем производственного здания
VПР = SПР × h, м3,(34)
где SПР – производственная площадь, м2;
h – высота, м.
VПР = 8008 × 15 = 120120 м3.