Смекни!
smekni.com

Механизм подъема с увеличенной высотой перемещения груза (перематывающая лебедка) (стр. 7 из 8)

где R1 , R2 – нагрузки на опору, кН;

, (4.20)

, (4.21)

где S – натяжение в ветви каната, кН;

,

,

,

.

Положение №2, канат находится в среднем положении (см. рис. 4.3):

Рисунок 4.2 – Расчетная схема, положение №2

Найдем радиальные силы в точках 1 и 2:

, (4.22)

гдеR1 – нагрузка на опору, Н;

, (4.23)

где S – натяжение в ветви каната, кН;

,

.

При расчете на статическую грузоподъемность проверяют, не будет ли радиальная нагрузка Fr на подшипник превосходить статическую грузоподъемность, указанную в каталоге:

(4.24)

Для диаметра в опорах d=55 мм выбираем подшипники шариковые радиальные сферические двухрядные № 1211 с статической радиальной грузоподъемностью Cor= 7,5 кН.

Так как канатоукладчик испытывает осевую нагрузку, то рассчитаем статическую осевую грузоподъемность и выберем третий подшипник:

, (4.25)

где

= 51,2 - коэффициент, зависящий от геометрии деталей подшипника;

Z = 20 – число шариков, воспринимающих нагрузку в одном направлении;

= 25 - диаметр шариков, мм;

.

Для диаметра d=45 мм выбираем подшипник шариковый упорный двойной № 8211Н со статической радиальной грузоподъемностью Cor= 42,4 кН.

5. РАСЧЕТ МЕХАНИЗМА ПЕРЕДВИЖЕНИЯ ТЕЛЕЖКИ

5.1 Выбор кинематической схемы

Выбранная кинематическая схема механизма передвижения тележки с центральным приводом и тихоходным трансмиссионным валом показана на рисунке 4.1. Предпочтительно расположение редуктора посередине между приводными ходовыми колесами. При этом обе половины трансмиссионного вала закручиваются под нагрузкой на одинаковый угол, что способствует одновременному началу движения приводных колес и ликвидации перекосов.

1 - ходовое колесо; 2 - муфта зубчатая с промежуточным валом; 3 - промежуточный вал; 4 – редуктор; 5 - муфта упругая втулочно-пальцевая с тормозным шкивом; 6 - тормоз; 7 - электродвигатель.

Рисунок 5.1 - Кинематическая схема механизма передвижения тележки

Определим вес тележки:

, (5.1)

где G – грузоподъемность, т;

5.2 Выбор колес и колесных установок

Число ходовых колес тележек зависит от грузоподъемности крана. При грузоподъемности до 160 т предварительно можно принимать четыре колеса.

Типоразмер колес определяется их диаметром, который выбирается по табл. 2.11 /2.2 c. 39/ в зависимости от максимальной статической нагрузки, приходящейся на одно колесо:

определяется из условия того, что нагрузка на ходовые колеса от веса поднимаемого груза, веса тележки, а также узлов и агрегатов, смонтированных на ней, распределяется равномерно на все опоры:

, (5.2)

где

– коэффициент неравномерности;

;

– грузоподъемность крана, кН;

– вес тележки, кН;

– вес грузозахватной подвески, кН;

– количество ходовых колес;

.

Согласно таблице 2.11 /18, c. 39/ принимаем диаметр колеса

. По ОСТ 24.090.09-75 принимаем для приводных колес установку типа – К2РП, для ведомых колес установку типа – К2РН.

5.3 Выбор рельса

В качестве подтележечных рельсов можно использовать рельсы как с выпуклой головкой (типы Р и КР), так и плоские. Типоразмер рельса определяем по таблице 2.11 /18, c.39/ в зависимости от максимальной статической нагрузки на колесо, таковым является типоразмер рельса с выпуклой головкой КР80 ГОСТ 4121-76 /18, с. 309

5.4 Выбор двигателя

Выбор электродвигателя для механизма передвижения крановых тележек производят по статической мощности, при которой обеспечивается надлежащий запас сцепления ходового колеса с рельсом, исключающий возможность буксования при передвижении тележки без груза в процессе пуска.

Определим статическую мощность электродвигателя, кВт:

, (5.3)

гдеW – сопротивление передвижению (принимаем равным W = 55 кН);

=1,0 - скорость передвижения тележки крана, м/с;

=0,85 - КПД механизма;

=1,7 – кратность среднепускового момента двигателя по отношению номинальному;

.

По каталогу /7, с. 55, таб. 2-32/ подбираем крановый электродвигатель большей ближайшей мощности.

Характеристика и основные параметры электродвигателя:

- тип – асинхронный с фазным ротором МТН 412-6;

- номинальная мощность – 30 кВт при ПВ 40 %;

- частота вращения – nдв = 965 об/мин;

- максимальный момент – Мmax = 932 Н∙м;

- КПД двигателя -

= 0,84;

- масса двигателя – Qдв = 345 кг;

- диаметр выходного конца вала – d1 = 65 мм.

Номинальный момент двигателя:

, (5.4)

гдеРд=30 – номинальная мощность электродвигателя, кВт;

n=965 – частота вращения, об/мин,

.

5.5 Расчет и выбор редуктора

Частота вращения ходового колеса:

, (5.5)

где

=1,0- скорость передвижения тележки, м/с;

Dк=0,71 – диаметр колеса, м;

.

Требуемое передаточное число привода:

, (5.6)

гдеn – частота вращения двигателя, об /мин;

nк – частота вращения ходового колеса тележки, об /мин;

.

Расчетная мощность редуктора:

, (5.7)

гдеРс=30 - статическая мощность электродвигателя, кВт;

kp=1,7 – коэффициент, учитывающий условия работы редуктора /17, с.40/;

.

По каталогу /18, с. 34/ подбираем крановый редуктор вертикальный двухступенчатый типа ВКУ-610М с передаточным числом 40 для частоты вращения 1000 об/мин и мощности 47,6 кВт при тяжелом крановом режиме работы, масса редуктора – 450 кг.

5.6 Выбор муфт

Всего в данном механизме передвижения тележки, исходя из выбранной кинематической схемы, используется три муфт, одна из которых упругая втулочно-пальцевая с тормозным шкивом, установленная на быстроходном валу редуктора, две зубчатые муфты с промежуточным валом, установленные на тихоходном валу.

5.6.1 Муфта, соединяющая электродвигатель с редуктором:

Расчетный момент для выбора муфты:

, (5.8)

гдеk1=1,2 - коэффициент, учитывающий степень ответственности механизма /таб. 1.35, с.42/;

k2=1,1 - коэффициент, учитывающий режим работы механизма /таб. 1.35, с.42/;

.

Выбираем упругую втулочно-пальцевую муфту с крутящим моментом 250 Н∙м, момент инерции Iм=0,24 кг∙м2.

5.6.2 Муфты, соединяющие редуктор с колесами:

Номинальный момент на тихоходном валу редуктора :

, (5.9)