Смекни!
smekni.com

Термическое отделение для непрерывного отжига металла (стр. 8 из 18)

Результаты контроля автоматически распечатываются на протоколе качества выходного поста АНО в метрах длины полосы, а также выводится на цветной дисплей.

Контроль механических свойств полосы производится магнитостатическим методом.

Внутренние дефекты полосы контролируются ультразвуковым дефектоскопом. Он включается при производстве заказов на продукцию, контролируемую, контролируемую ультразвуком.

При неисправности дефектоскопа контроль качества поверхности производится визуально.

При неисправности твердомера и при отжиге без дрессировки, механические испытания производятся прямым методом в лаборатории механических испытаний.

При прохождении через АНО полосы с грубыми дефектами поверхности (складки, рваная кромка) оператор управления выводит из зоны контроля все приборы неразрушающего контроля и вновь вводит их в работу после восстановления нормальной формы полосы.

Шероховатость полосы и ее механические свойства определяются в лаборатории механических испытаний.

Таблица 9

Перечень средств измерений, используемых в процессе непрерывного отжига

Измеряемый параметр

Наименование средств измерений

Пределы измерения

Класс точности (цена деления)

1

2

3

4

Размер рулона

Рулетка

0−2500 мм

1 мм

Толщина полосы

Микрометр

0−25 мм

0,01 мм

Ширина полосы

Рулетка

0−2000 мм

1 мм

Масса рулона

Весы

25000−50000 кг

10 мм

Скорость полосы в линии

Таховольтметр

0−350 м/мин

10 м/мин

Сила сварочного тока

Амперметр

0−1250 А

0−2500 А

50 А

100 А

1

2

3

4

Температура моющего раствора

Термометр сопротивления, логометр

0−100° С

1

Давление воды в ШММ

Манометр технический

0−10 кгс/см2

2,5

Температура промывной воды

Термометр сопротивления, логометр

0−100° С

1

Объемная доля водорода в защитном газе

Газоанализатор

0−50 ррм

1,5

Давление защитного газа в печных секциях

Напоромер

0−30 мм вод.ст

1,5

Объемная доля кислорода в азоте

Газоанализатор

0−50 ррм

2

Объемная доля кислорода в печных секциях

Газоанализатор

0−50 ррм

5

Влажность защитной атмосферы (точка росы)

Влагомер

-40−60° С

2

Температура по зонам печи

Преобразователь термоэлектричес-кий, показываю-щий регулятор

0−1000° С

10° С

Температура полосы по секциям печи

Пирометр

400−900° С

200−500° С

15° С

10° С

Температура травильного раствора

Термометр сопро-тивления, показы-вающий регулятор

0−100° С

1

Массовая доля концентра-ции травильного раствора

Измеритель кон-центрации, показы-вающий регулятор

0−100%

±3° С

Объемная доля кислорода в водороде

Газоанализатор

0−50 ррм

2

Шероховатость полосы

Профиломер

0,01−30 мкм

0,01 мкм


4. СПЕЦИАЛЬНАЯ ЧАСТЬ

4.1 Способы и методы цинкования

Важную роль в решении задач по повышению срока службы металлопродукции играют защитные покрытия, использование которых позволяет увеличить стойкость и долговечность стальных изделий и является одним из эффективных путей снижения потерь металла от коррозии.

Из металлических покрытий в мировой практике наиболее широко применяют цинковые. Физико-химические свойства цинка, относительная простота технологии и оборудования для нанесения цинковых покрытий позволяет успешно применять их для защиты металлоизделий от коррозии.

По объему и номенклатуре защищаемых от коррозии изделий цинковому покрытию нет равных среди других металлических покрытий. Это обуславливается многообразием технологических процессов цинкования, их относительной простотой, возможностью широкой механизации и автоматизации, высокими технико-экономическими показателями.

В настоящее время существуют различные методы, способы и приемы нанесения цинковых покрытий на стальные и чугунные изделия. При их классификации и выявлении физико-химической сущности следует исходить из механизма образования покрытий. Основываясь га этом принципе можно выделить следующие основные методы нанесения цинковых покрытий: диффузионный, электролитический, металлизационный.

Диффузионный метод образования цинковых покрытий представляет собой процесс, происходящий при высоких (380−850° С) температурах и основанный на явлении диффузии.

Цинк отвечает требованиям, необходимым для образования диффузионных покрытий на железе и его сплавах, растворимость цинка в железе при 20° С составляет 6% (по массе). Диффузионный метод нанесения цинковых покрытий может осуществляться разными способами. При этом необходимо учитывать физико-химическую характеристику активной фазы (или среды), содержащей диффундирующий элемент (цинк). Если активной фазой, содержащей диффундирующий элемент и участвующей в его переносе к обрабатываемой поверхности, является растворимый цинк, то говорят о жидкофазном способе цинкования. В промышленности этот способ получил название «горячее цинкование». При диффузионном цинковании жидкофазным способом (в расплаве цинка) происходит взаимодействие стали с расплавленным цинком, в результате которого на поверхности образуются железоцинковые соединения (фазы). При этом изменяются химический состав и структура поверхностного слоя стали.

Диффузионное цинковое покрытие, полученное в расплаве цинка, состоит из нескольких железоцинковых фаз, расположенных непосредственно на основном металле, и слоя цинка. Слой цинка, который по составу в основном соответствует расплаву, возникает при извлечении изделия из ванны цинкования. Вероятность образования тех или иных слоев железоцинковых соединений в покрытии во многом зависит от режима цинкования, состава и структуры цинкуемого металла, а также от состава расплава цинка. Толщина покрытия для сталей подобного химического состава при одинаковом состоянии их поверхности зависит от продолжительности цинкования, температуры расплава цинка и его состава, а также от скорости извлечения цинкуемого изделия при условии одинакового способа извлечения.

Если расплав цинка не содержит добавок, подавляющих рост железоцинковых соединений, то их толщина зависит от продолжительности цинкования и температуры расплава и не зависит от скорости извлечения. Толщина слоя цинка обусловлена скоростью извлечения изделия из расплава, температуры расплава и не зависит от продолжительности цинкования.


4.2 Влияние химического состава стали, температуры и продолжительности цинкования на толщину, структуру и свойства покрытия

Химический состав стали оказывает большое влияние на взаимодействие жидкого цинка со сталью. Присутствие в стали отдельных элементов может существенно изменить характер этого взаимодействия, вызывая изменение строения, толщины и свойств образующегося цинкового покрытия.

Наиболее часто цинкованию подвергают низкоуглеродистую сталь, содержащую: 0,05−0,24% углерода; 0,01−0,37% кремния; 0,2−0,65% марганца; 0,02−0,06% серы; 0,02−0,07% фосфора; 0,1−0,3% меди; 0,1 −0,3% хрома; 0,1−0,3% никеля.

Эти составы соответствуют составам Ст. 3, 08 (всех степеней раскисления), стали 10, стали 20, из которых изготавливают лист, полосу, трубы проволоку и другие металлоизделия.