Расчет делительных диаметров зубчатых колес и шестерней производится по формуле, приведенной в [2]:
Расчет делительных диаметров шестерней:
; ; .Расчет делительных диаметров зубчатых колес:
; ; .Определим наружный и внутренний диаметры шестерёнок и зубчатых колёс по формулам [2]:
(11) (12)Расчет наружных диаметров:
Расчет внутренних диаметров:
4.2 Расчет минимальных диаметров валов. Определение высоты зубчатых колес
Рассчитаем минимальные диаметры валов[6]:
, (13)где
- крутящий момент на валу, ; - сдвиговая прочность материала, . , (14)где
- предел текучести материала в [11].Диаметры валов равны:
; ; ; ;Исходя из конструктивных соображений и согласно методикам, приведенным в [3] примем ширину зубчатого венца для шестерней-3 мм, для зубчатых колес-1 мм. Диаметры валов, кроме выходного примем равными 3 мм, а выходного- 5 мм.
Проведенные расчеты по определению числа зубьев, диаметров колес и шестерней, числа ступеней, межосевых расстояний, диаметров валов позволяют произвести компоновку редуктора, представленную на ФЮРА.303225.101.СБ.
5. Определение люфтовой погрешности, вносимой мертвым ходом
Из таблицы, приведенной в [3], задав квалитет точности 7 и вид сопряжения H для всех ступеней, выберем значения бокового зазора
для значений межосевых расстояний, лежащих в пределах св.12 до 20 мм равным 30 мкм.Расчет передаточных отношений:
Расчет составляющих люфтовой погрешности каждой ступени:
'; '; '.Находим люфтовую погрешность передачи по формуле:
Из расчетов видно, что наибольшую составляющую люфтовой погрешности вносит выходное звено. Погрешность, вносимая мертвым ходом, допустима, т.к. не превышает 3 угловых минут.
Относительная погрешность редуктора определяется по следующей формуле:
Полученная относительная погрешность допустима.
6. Разработка и описание кинематической схемы
Характерными особенностями зубчатых передач, применяемых в приборостроении, являются: большие передаточные отношения при малых габаритах передачи, мелкий модуль, малый вес и недостаточно жёсткая (с точки зрения технологии обработки) конструкция зубчатых колёс. Как правило, эти передачи приводятся в движение маломощными двигателями или от руки, и во многих случаях они работают в приборах, подверженных ударным нагрузкам и вибрациям при изменяющихся климатических условиях.
К зубчатым передачам точных приборов предъявляются высокие требования в отношении кинематической точности, мертвого хода, моментов, легкости, плавности и бесшумности вращения.
С увеличением числа ступеней в маломощных редукторах уменьшается КПД передачи. Поэтому, определяя оптимальное значение из условия минимальных габаритов и округляя полученное до целого, нужно брать меньшее значение ступеней.
Кинематическая схема редуктора программного механизма приведена на ФЮРА.303225.101 КЗ.
Чтобы по возможности ограничить габариты и массу редуктора, исходя из проведенных расчетов, число ступеней редуктора равно 6. Следовательно, для передачи движения от двигателя на выходной вал имеется 12 колес
На выходном валу редуктора имеется нагрузка 0,09Нм.
Максимальная скорость выходного звена 2,1 об/мин, максимальное ускорение 0,2 с-2
Редуктор с двумя платами. Исполнение закрытое.
7. Связь с внешними устройствами
Крепление корпуса и крышки осуществляется при помощи винтов поз.16. Цапфы валов и валов- шестерней поз 1, 2, 3, 4, 5 вставляются в корпус и крышку. Валы изготовлены из стали 45 ГОСТ 1050-74 и имеют один диаметр, что удобно и экономично при их изготовлении. Комбинации стали и латуни обеспечивает наименьший момент трения.
На выходном валу установлены радиальные однорядные шарикоподшипники поз.17. Для закрепления шарикоподшипников применяется пластины из стеклотекстолита ГОСТ 12652-74 поз.6 и поз.7. Для снижения момента трения в опорах скольжения и в шарикоподшипнике применяется смазка ВНИИ НП-274 ГОСТ 19337-73. Этот вид смазки применим для маломощных редукторов, малогабаритных прецизионных шарикоподшипников, обладает низкой испаряемостью и высокой механической стабильностью.