Смекни!
smekni.com

Производство карбамида (стр. 5 из 6)

- условие выполняется.

7.7 Выбор тарелок

Определение гидравлического сопротивления колонны

Для уменьшения продольного перемешивания реакционной смеси, применяют секционирование аппарата установкой массообменных перегородок.

Для данного аппарата согласно [7 c.217] выбираем ситчатые тарелки ТС – Р.

Рабочее сечение тарелки 2,822

Диаметр отверстия 3 мм

Шаг между отверстиями 8 мм

Относительное свободное сечение тарелки 5,4%

Масса 120 кг

Общее количество тарелок 30

Ситчатые тарелки обеспечивают достаточно малый размер пузырьков по всей высоте колонны. Разрушают воздушные пробки, способствуют сохранению высокой величины площади контакта между газовой и жидкой фазами.

Определим гидравлическое сопротивление колонны.

Исходные данные:

Объемный расход аммиака VNH3 = 6,8·10-3 м3

углекислоты VСО2 = 2 м3

карбамида Vпл = 3,6·10-3 м3

Плотность аммиака ρNH3 = 910 кг/м3

углекислоты ρСО2 = 1,98кг/м3

карбамида ρпл = 900 кг/м3

Диаметр аппарата D = 2000мм

Диаметр тарелок D = 1800мм

Скорость плава

,

где с = 0,05

м/с

,

где α = 80º

м2

м2

Площадь отверстий

м2

Скорость плава через отверстия

м/с

Сопротивление тарелки

Н/м2

Найдем сопротивление, вызванное силами поверхностного натяжения

,

где σ – поверхностное натяжение жидкости (Н/м)

σ = 70 ·10-3 Н/м

Н/м2

Общее сопротивление

Н/м2

Сопротивление колонны

,

где п – число тарелок

Н/м2

Проверим условие:

- условие не выполняется.

Следовательно, уменьшаем число тарелок.

Примем, что п = 20

Тогда

Н/м2

- условие выполняется.

7.8 Расчет массы аппарата

Масса корпуса аппарата

mк = 0,785(Dн2-Dвн2)Нρ

где Dн = 2,36 м – наружный диаметр корпуса;

Dвн = 2,00 м – внутренний диаметр корпуса;

Н = 29 м – высота цилиндрической части корпуса

ρ = 7800 кг/м3 – плотность стали

mк = 0,785(2,362-2,02)29·7800 = 845503 кг

Общая масса аппарата.

Принимаем, что масса вспомогательных устройств (штуцеров, фланцев и т.д.) составляет 10% от основной массы аппарата, тогда

m = 0,1(mк + mвс + mд + mкр) = 657771 кг = 6,45 МН

Масса аппарата заполненной водой при гидроиспытании.

Масса воды при гидроиспытании

mв = 1000(0,785Dк2 · Hц.к + Vд + Vкр) =

= 1000(0,785·2,02·18,3 +0,26 + 1,42) = 66914 кг

Максимальный вес аппарата

mmax = m + mв = 657771 + 66914 = 724685 кг = 7,10 МН

7.9.Расчет аппарата на сейсмическую нагрузку

Рисунок10 – расчетная схема аппарата

Отношение H/D = 32/2,0 = 16 > 15, следовательно, расчетная схема принимается в виде консольного стержня с жесткой заделкой. Условно разбиваем по высоте аппарат на 4 участка по 8 метров, вес участка принимается сосредоточенным в середине участка.

Период свободных колебаний:

,[8 c.2]

где Е – модуль продольной упругости Е = 2·105МПа

I – экваториальный момент инерции площади сечения верхней части корпуса аппарата относительно центральной оси (м4)

= 3,14/64·[(2+2·0,18)4 – 24] = 0,74 м4

Тогда

Т = 1,8·32·(7,1·106·32/9,81·2·1011·0,74)0,5 = 1 с-1

Величина сейсмической силы в середине i-го участка.

При Н/D > 15

где Кс = 0,05 – сейсмический коэффициент при 8 балах [2 c.693];

β = 0,55 - коэффициент динамичности;

Gi – сила тяжести i-го участка.

Принимаем, что масса аппарата распределена по высоте равномерно, тогда

Gi = 7,10/4 = 1,78 МН

Предварительно рассчитываем суммы

∑Gix2i = 1,78(4,02+12,02+20,02+28,02) = 2393 МН·м2

∑Gix4i = 1,78(4,04+12,04+20,04+28,04) = 1,41·106 МН·м 4

Сейсмическая сила в середине каждого участка

Р1 = 0,05·0,55·1,78·28,02·2393/1,41·106 = 0,0648 МН

Р2 = 0,05·0,55·1,78·20,02·2393/1,41·106 = 0,0330 МН

Р3 = 0,05·0,55·1,78·12,02·2393/1,41·106 = 0,0118 МН

Р4 = 0,05·0,55·1,78·4,02·2393/1,41·106 = 0,0014 МН

Расчетный изгибающий момент в нижнем сечении опоры аппарата от сейсмической нагрузки при учете первой формы колебаний

= 0,0648·28,0+0,0330·20,0+0,0118·12,0+0,0014·4,0 = 2,616 МН·м

Расчетный изгибающий момент в том же сечении опоры с учетом влияния высших форм колебаний

Мс1 = 1,25Мс = 1,25·2,616 = 3,270 МН·м

Условие устойчивости:

, [8 c.2]

где N – суммарная осевая нагрузка

,

где к – коэффициент, учитывающий вес внутренних устройств

γ – удельный вес материала

N = 0,804 МН

[8 c.7]

где

- эмпирический коэффициент

= 1/1+15,3[215·106/2·1011(2/0,18-0,001)]2 = 1,53

[М] = 0,785·1,53·145·106·22·(0,18-0,001) = 125,2 МПа

N = 3,14·2·(1,18 – 0,001) ·1·145·106 = 163 МН

0,804/163 + 3,27/125,5 = 0,03

0,03‹1 – условие выполняется.

7.10 Расчет опоры аппарата

Аппараты вертикального типа с соотношением Н/D > 5, размещаемые на открытых площадках, оснащают так называемыми юбочными цилиндрическими опорами, конструкция которых приводится на рисунке.


Рисунок11 – Опора аппарата

Принимаем толщину цилиндрической стенки опоры S= 20 мм.

Материал опоры сталь Ст 3 ГОСТ 380-88

σв = 380 МПа; σт = 220 МПа; Е = 2,10·105 МПа; [σ] = 146 МПа

Диаметр опоры равен 2,80 м.

Размеры опорного кольца.

Внутренний диаметр кольца принимаем D2 = 2,65 м

Наружный диаметр кольца принимаем D1 = 3,12 м

Опорная площадь кольца

F = 0,785(D12 – D22) = 0,785(3,122 – 2,652) = 2,13 м2

Момент сопротивления опорной площади кольца

W = π(D14 – D24)/32D1 = π(3,124 – 2,654)/32·3,12 = 1,43 м4

Напряжение сжатия в стенке опоры с учетом отверстия для лаза

d = 0,5м

σс = Gmax/[π(D+S) – d](s - c) =

= 7,10/[π(2,80+0,020) – 0,5](0,020-0,001) = 44,7 МПа

Напряжение на изгиб в стенке опоры

σи = М/π(D + s)2(s - c) =

= 3,270/π(2,80+0,020)2(0,020-0,001) = 6,9 МПа

Отношение

D/2(s - c) = 2,82/2(0,020– 0,001) = 74

по этой величине по графику [2c.418] находим коэффициенты:

kи = 0,08; kc = 0,06

Kc = 875σтkc/E = 875·220·0,08/2,1·105 = 0,073

Kи = 875σтkи/E = 875·220·0,06/2,1·105 = 0,055

Допускаемые напряжения на сжатие и изгиб в обечайке опоры

с] = КсЕ(s - c)/D = 0,073·2,10·105(0,020 – 0,001)/2,80 = 104 МПа

и] = КиЕ(s - c)/D = 0,055·2,10·105(0,020 – 0,001)/2,80 = 78 МПа

Устойчивость цилиндрической опоры

= 44,7/104 +6,9/78 = 0,52 < 1

устойчивость обеспечена.

Максимальное напряжение на сжатие в сварном шве, соединяющем цилиндрическую опору с корпусом аппарата, при коэффициенте сварного шва φш = =0,7