Смекни!
smekni.com

Шарнирно-рычажные и кулачковые механизмы (стр. 1 из 3)

Шарнирно-рычажные механизмы, классификация звеньев по виду движения. Кулачковые механизмы, принцип действия, наименование звеньев. Область применения

В шарнирно-рычажных механизмах жесткие звенья типа стержней, рычагов соединяются вращательными и поступательными кинематическими парами. Шарнирно-рычажные механизмы применяются для преобразования вращательных или поступательных движений входных звеньев в качательное или возвратно-поступательное движение выходных звеньях.

В зависимости от характера движения и назначения звенья имеют определенные названия. Звено, совершающее полный оборот вокруг неподвижной оси - кривошип; плоскопараллельное движение имеет шатун; качательное - коромысло; поступательное - ползун; направляющая - неподвижное звено, образующее поступательную пару с ползуном; коромысло, служащее направляющей для ползуна (кулисного камня) - кулиса и др.

Кулачковые механизмы - механизмы с высшими кинематическими парами, которые образуются путем силового и геометрического замыкания его звеньев: кулачка и толкателя; кулачка и коромысла. Эти механизмы используются для преобразования вращательного движения входного звена в возвратно-поступательное, качательное или сложное движение выходного с остановками заданной продолжительности.

Кулачковые механизмы в зависимости от движения выходного звена делятся на три вида:

1. Выходное звено движется поступательно.

2. Выходное звено вращается.

3. Выходное звено совершает сложное движение.

Цилиндр, ограниченный в сечении плоской кривой, вращается вокруг оси с заданной угловой скоростью. Действуя на ролик, свободно вращающийся вокруг оси, цилиндр заставляет второе звено совершать одно из перечисленных выше движений.

Кулачком называется звено высшей пары, элемент которого имеет переменную кривизну. Если выходное звено движется поступательно, оно называется толкателем; если вращается, то коромыслом; а если совершает сложное движение, то называется шатуном.

Кулачковые механизмы находят широкое применение в специальном технологическом оборудовании электронной промышленности. Кулачковый механизм применяется в двигателях внутреннего сгорания в газораспределительном механизме, в металлорежущих станках и других машинах для воспроизведения сложной траектории движения рабочих органов и выполнения функций управления, таких как включение и выключение рабочих органов по определённой схеме.

Многозвенные механические передачи: многоступенчатые передачи, ряд последовательно зацепляющихся колес. Определение передаточного отношения каждого из указанных видов механизма, изобразите кинематические схемы.

Для осуществления значительных передаточных отношений применяются несколько последовательно соединенных колес, где, кроме входного и выходного имеются еще промежуточные колеса, такие передачи называются многоступенчатыми.

Многоступенчатые передачи, у которых оси вращения колес неподвижны, носят также названия рядового соединения.

Передаточное отношение сложной многоступенчатой зубчатой передачи есть произведение взятых со своими знаками передаточных отношений отдельных его ступеней.

U1n = ω1n = U12·U2’3·U3’4·…·U (n-1) ’n

Для каждой ступени передач имеем:

U12 = ± (r2/r1) = ± (z2/z1),

U2’3 = ± (r3/r2’) = ± (z3/z2’),

………………………….

U (n-1) ’n = ± (rn/r (n-1) ’) = ± (zn/z (n-1) ’),

где r1, r2, r2’, r3,…., r (n-1) ’, rn - радиусы начальных окружностей колес, а

z1, z2, z2’, z3,…., z (n-1) ’, zn - числа зубьев, причем верхний знак берется при внутреннем, а нижний - при внешнем зацеплении.

В инженерных расчетах также пользуются формулой:

U1n = ω1n = (-1) m ∙U12·U2’3·U3’4·…·U (n-1) ’n,

где m - число внешних зацеплений.

В некоторых многоступенчатых зубчатых передачах оси отдельных колес являются подвижными. Такие зубчатые механизмы с одной степенью свободы называются планетарными механизмами, а с двумя и более степенями свободы дифференциальными механизмами или просто дифференциалами. В этих механизмах колеса с подвижными осями вращения называются планетарными колесами или сателлитами, а звено, на котором располагаются оси сателлитов - водилом. На схемах водило принято обозначать буквой Н. Зубчатые колеса с неподвижными осями вращения называются солнечными или центральными; неподвижное колесо - опорным.

Передаточное отношение определяется по формуле Виллиса:

Формула Виллиса читается так: передаточное отношение от колеса с номером К к водилу Н при неподвижном колесе с номером L равно единице минус передаточное отношение от колеса с номером К к открепленному колесу с номером L при закрепленном водиле Н. Заметим, что планетарный механизм с закрепленным (условно) водилом Н превращается в многозвенный механизм с неподвижными осями колес. Обычно закрепленное звено обозначается в выражении передаточного отношения верхним индексом в скобках. Пусть у редуктора Давида (тип В) ведущим является колесо 1, неподвижным колесо 3, тогда:

Для всех типов механизмов изображенных на рисунке, выражения передаточных отношений могут быть сведены в таблицу 1.

Во многих планетарных механизмах ведущим может быть водило Н. Тогда передаточное отношение

определяется, как обратное выражению
:

Формулу Виллиса можно обобщить на дифференциал с любым числом колес до k:

Схема зубчатого дифференциального механизма с цилиндрическими колесами.

Трение в винтовой паре. Трение в цапфах и пятах

При рассмотрении трения в винтовой кинематической паре обычно делают целый ряд допущений. Во-первых, так как закон распределения давлений по винтовой резьбе неизвестен, то условно считают, что сила давления гайки на винт или, наоборот, винта на гайку приложена по средней линии резьбы. Средняя линия резьбы расположена на расстоянии r от оси винта. Во-вторых, предполагается, что действие сил в винтовой паре может быть сведено к действию сил на ползун, находящийся на наклонной плоскости. Развертывая среднюю линию винтовой резьбы на плоскость, сводят пространственную задачу к плоской.

Тогда сила трения:

f = tgφ - коэффициент трения,

β - угол подъема винтовой резьбы,

F - сила, необходимая для равномерного перемещения гайки.

Этим соотношением можно пользоваться при определении сил трения в винтовых парах с прямоугольной резьбой. При треугольной резьбе весьма приближенно считают, что движение гайки аналогично движению клинового ползуна по желобу, у которого угол между вертикалью и стенками желоба равен 90°-α, где α - угол подъема резьбы. Сила трения:

Так как коэффициент трения f’ больше коэффициента трения f, то трение в винтовой паре с треугольной резьбой больше, чем в винтовой паре с резьбой прямоугольной.

При рассмотрении трения в цапфах предполагают, что вал, располагающийся в подшипнике, находится под действием радиальной силы F’ и внешнего момента М и вращается с постоянной угловой скоростью ω. Между валом и подшипником имеется радиальный зазор. Тогда при вращении вала, при наличии трения между валом и подшипником его цапфа будет как бы "взбегать" на подшипник. Предположим, что вследствие "взбегания" цапфы на подшипник касание элементов кинематической пары оказывается в точке, где реакция F’’ параллельна силе F’. На основании ранее установленных положений полная реакция F’’ должна быть отклонена от нормали на угол трения φ, и величина силы трения FТ получается равной:

,

так как при равновесии цапфы F’’= F’.

Момент М, приложенный к цапфе, уравновешивается моментом трения МТ, равным:

МТ = Fr = fF’rcosφ = F’rsinφ = F’ρ

Если из центра вала О описать радиусом ρ окружность, то полная реакция F’’ будет направлена по касательной к этой окружности. Круг радиуса ρ называется кругом трения. Так как углы трения малы, то можно считать:

sinφ ≈ tgφ,

ρ ≈ rf.

Момент трения:

МТ = F’rf’,

где r - радиус цилиндрического элемента пары, f’ - коэффициент трения во вращательной паре, F’ - результирующая нагрузка на цапфу.

В некоторых случаях вращательные пары выполняют в виде пяты и подпятника, нагруженных осевой силой F. В этом случае на поверхности касания пяты и подпятника возникает сила трения верчения, починяющаяся закону Амонтона-Кулона.

Если пята кольцевая, то момент трения:

Если пята не кольцевая, а сплошная: