Смекни!
smekni.com

Детали приборов (стр. 6 из 10)

1 — ведущий каток; 2 — ведомый каток

Условие работоспособности передачи:

(1)

Нарушение условия (1) приводит к буксованию и быстрому износу катков. Для того чтобы передать заданное окружное усилие Ft., фрикционные катки надо прижать друг к другу усилием Frтак, чтобы возникающая при этом сила трения

была бы больше силы Ft. на величину коэффициента запаса сцепления
, который принимают равным
= 1,25...2,0.

Силы в передаче.

Для обеспечения работоспособности фрикционных передач необходимо прижать катки (см. рис.5) силой нажатия

таким образом, чтобы соблюдалось условие (1), т. е.

(11)

где

— максимальная сила трения;
— передаваемая окружная сила;
— коэффициент трения (выбирается по табл.1). Отсюда сила нажатия
или

, (12)

где

— коэффициент запаса сцепления; вводится для предупреждения пробуксовки от перегрузок в период пуска передачи (для силовых передач
= 1,25 ÷ 1,5; для передач приборов
= 3 ÷ 5).

По схеме, показанной на рис.5,

. (13)

Подставив формулу (13) в формулу (12), определим силу нажатия

. (14)

На практике применяют два способа прижатия катков (роликов): постоянной силой и автоматическое. Постоянная по значению прижимная сила катков допустима при передаче постоянной нагрузки. При переменной нагрузке прижатие катков должно изменяться автоматически — пропорционально изменению передаваемого вращающего момента. В этом случае снижаются потери на трение, повышается долговечность передачи.

В первом случае сила прижатия, осуществляемая обычно с помощью пружин, в процессе paботы изменена быть не может; во втором случае сила прижатия изменяется с изменением нагрузки, что положительно, сказывается на качественных характеристиках передачи.

Вариаторы — передачи, посредством которых можно плавно, бесступенчато изменять передаточное число. По форме тел вращения вариаторы бывают лобовые, конусные, торовые и др.

Вариатор позволяет бесступенчато изменять передаточное отношение между двигателем и трансмиссией. А это значит, что для каждого режима работы автомобиля (т.е. скорости и сопротивления движению) удается подобрать наиболее эффективное значение передаточного отношения, а не усредненное, как в любой другой коробке передач. Главный недостаток вариаторов состоит в том, что они фрикционные (работают за счет трения, а не зубчатого зацепления), и поэтому могут передавать ограниченный крутящий момент, при превышении которого рабочие поверхности начинают проскальзывать и интенсивно изнашиваться. А это означает, что их нельзя использовать в паре с мощными двигателями.

Вариаторы имеют КПД ниже чем простые передачи с постоянным передаточным отношением.

В передачах с одним регулируемым шкивом (рис. 18, а) шкив подпружинен и, как правило, насажен на вал электродвигателя, ведомый шкив постоянного диаметра — на вал рабочей машины. Перемещением двигателя изменяется натяжение ремня, заставляющее перемещаться диски подпружиненного шкива и изменяющее его рабочий диаметр. В качестве тягового органа в ременных вариаторах применяют как стандартные клиновые ремни, так и специальные широкие вариаторные ремни. Скорость регулируют изменением диаметра одного шкивов посредством осевого перемещения конических дисков, образующих шкив.

В настоящее время на автомобилях применяют два типа вариатора: клиноременной и торовый. Клиноременной состоит из двух раздвижных шкивов и натянутого между ними ремня. Один шкив соединен с двигателем, и является ведущим, второй, ведомый, - с ведущими колесами. Шкивы, как уже говорилось, раздвижные, то есть, состоят из двух половинок. Если половинки шкива сближаются, ремень выталкивается наружу, если раздвигаются, ремень проваливается внутрь. Изменение радиусов, по которым вращается ремень, происходит синхронно - когда один шкив увеличивает радиус, другой его уменьшает. В итоге плавно изменяется передаточное отношение: пока радиус ведущего шкива меньше, чем ведомого, имеем пониженную передачу; если радиусы равны - передача прямая; если же ремень на ведущем шкиве вращается по большему радиусу, чем на ведомом — получаем повышенную передачу.

18. Конструирование валов и осей. Передача крутящего момента и осевой силы

Валом называют деталь (как правило, гладкой или ступенчатой цилиндрической формы), предназначенную для передачи крутящего момента и для поддержания установленных на ней шкивов, зубчатых колес, звездочек, катков и т. д. Опорами служат подшипники и подпятники

Осью называют деталь, предназначенную только для поддержания установленных на ней деталей. Оси обеспечивают вращающее движение звеньев, нагружены поперечными силами и изгибающими моментами, как и валы, но не передают крутящий момент


Рис.1. Прямой вал: 1 — вал; 2 — опоры вала; 3 — цапфы; 4 — шейка

Вал1(рис.1) имеет опоры2,называемые подшипниками. Часть вала, охватываемую опорой, называют цапфой. Концевые цапфы именуют шипами3,а промежуточные — шейками4.

Цапфой называется участок вала или оси, которыми они соприкасаются с опорами. Цапфа, расположенная на конце вала или оси – шип., а посередине – шейка.

Валы и оси следует конструировать по возможности гладкими с минимальным числом уступов. Каждая насаживаемая на вал или ось деталь должна свободно проходить до своей посадочной поверхности. Торцы валов и осей и их уступы выполняют с фасками (рис.3.1.2, 3.1.4) для удобства насадки деталей. Для увеличения изгибной жесткости валов и осей насаживаемые детали располагают ближе к опорам. Для повышения несущей способности валов и осей их поверхность подвергают упрочнению.

В схеме (см. рис.9, а) Мк — крутящий момент, возникающий в поперечных сечениях вала; FBи FT— силы, действующие на вал в вертикальной и в горизонтальной плоскостях.

Рис.9. Расчетная схема валов: а — схема нагружения; б — эпюра изгибающего момента вертикальной плоскости; в — эпюра изгибающего момента в горизонтальной плоскости; г — эпюра крутящего момента; д — эскиз вала

1. По чертежу узла составляют расчетную схему (рис.9, а).

2. Определяют действующие на вал силы; если они действуют не в одной плоскости, то их необходимо разложить по двум взаимно перпендикулярным плоскостям. При угле между плоскостями менее 30° все силы можно рассматривать как действующие в одной плоскости.

3. Определяют опорные реакции:

в вертикальной плоскости

в горизонтальной плоскости

.

4. Изгибающие моменты Ми и их эпюры:

в вертикальной плоскости — в сечении А и С Ми.в = 0;

в сечении В

(рис.9, б);

в горизонтальной плоскости — в сечении А и С Ми.г = 0;

в сечении В

(рис.9, в).

5. Суммарный изгибающий момент в сечении В

(9)

6. Определяют крутящий момент и строят эпюру (см. рис.9, г):

(10)

где Р — мощность, Вт;

— угловая скорость, рад/с.

7. По формуле (6) определяют эквивалентный момент, диаметр вала между опорами определяют по формуле

(11)

Полученное значение dокругляют до ближайшего большего стандартного.

8. Определяют диаметры под подшипниками don(рис.9, д) и округляют до большего стандартного значения.

19. Расчет валов на жесткость при изгибе и кручении

Критериями жесткости валов являются: прогибы валов f, углы поворота θ, углы закручивания. Прогибы валов усиливают неравномерность распределения нагрузки (вдоль контактных линий) в зубчатом зацеплении, в подшипниках скольжения. Недостаточная жесткость явл 1 из причин повыш интенсивности колебания валов.

Различают изгибную и крутильную жесткость.

Изгибная жёсткость обеспечивается при выполнении условий:

f≤[f] где [f] (=0,02 мм ) – допустимый прогиб вала.

Прогиб в месте воздействия силы:

,мм.

Расчет валов и осей на крутильную жесткость.

Максимальный угол закручивания определяется