Для непрерывнодействующих сушилок рассчитывают часовой расход теплоты, для сушилок периодического действия - расход теплоты на один цикл сушки. Расход теплоты (в кДж/ч) на испарение жидкости
Qисп = W(Hп - Hж),
на испарение воды
Qисп = 4,19 W(595 + 0,49tг - Ө1)
где Hп – энтальпия перегретого пара жидкости при температуре отходящих газов; Hж – энтальпия жидкости при начальной температуре материала; tг – температура отходящих газов, К; Ө1 – начальная температура материала, К.
Расход теплоты на нагревание высушенного материала(в кДж/ч):
Qм = G2см(Ө2 - Ө1),
где Ө2 – температура материала, уходящего из сушильной камеры, К; см теплоемкость высушенного материала, кДж/(кг · К).
Причем
см = сс (1 –w2) + w2с2,
где сс - теплоемкость абсолютно сухого материала, кДж/(кг · К).
Потери теплоты сушилкой в окружающую среду (в кДж/ч):
Qп = KFп.с (t'- t0)
где K - коэффициент теплопередачи через стенку сушилки; Fп.с - наружная поверхность сушилки; t' - средняя температура в сушилке, К; t0 - температура окружающей среды, К.
Теплоизоляцию сушилки подбирают с учетом того, чтобы температура наружной стенки не превышала 40—50 °С (313-323 К). До определения максимальной поверхности сушилки можно приближенно принять удельные потери теплоты в окружающую среду qп = 125 ч 420 кДж на 1 кг испаренной влаги в зависимости от влажности материала (меньшую величину принимают для высоковлажных материалов).
Потери теплоты с отходящими газами составят
QT = LH2 ,
где Н2-энтальпия отходящих газов.
При расчете сушилок часто приходится учитывать дополнительное количество воздуха Lдоп, который поступает в сушилку через загрузочное отверстие и другие неплотности. Обычно принимают
Lдоп ≈ 0,1 L
Расход теплоты на дегидратацию и другие эндотермические процессы (в кДж/ч)
Qд = q'д G2 .
где q'д -средняя удельная теплота дегидратации, отнесенная к 1 кг готового (сухого) продукта.
1.3 Возможности интенсификации процессов сушки
В связи с ростом производства различных химических продуктов, повышением требований к их качеству, совершенствованием технологии производства появляется необходимость в разработке новых способов сушки, обеспечивающих высокое качество продукта, максимальную автоматизацию, механизацию и значительную интенсификацию процесса.
Условная удельная интенсивность процесса (например, съем влаги с 1 м3 любого аппарата) зависит от концентрации материала, точнее - от активной поверхности тепло- и массообмена материала в единице объема, от максимально допустимых потенциалов переноса теплоты и массы и от гидродинамической (аэродинамической) обстановки.
Например, при двух различных способах сушки удельная интенсивность испарения может быть одинаковой, если в первом случае поддерживается более высокая концентрация материала, а во втором - более высокие температуры газовой фазы. Анализируя с этой точки зрения каждый сушильный аппарат, можно выявить возможность максимальной интенсификации процесса в нем и соответственно его перспективность для использования в промышленности.
Для интенсификации процессов сушки и повышения экономической эффективности работы аппаратов могут быть выбраны следующие пути:
использование более высоких начальных температур теплоносителя в условиях автоматизированных контроля и регулирования температуры. С повышением температуры теплоносителя резко сокращается длительность сушки, в результате материал сохраняет свои качественные показатели. При этом уменьшаются удельные расходы топлива и электроэнергии;
использование больших локальных скоростей (сопловая сушка), пульсирующих газовых потоков и вибрации частиц материала, закрученных высокоскоростных потоков (вихревая сушка) и т.д.;
применение электрических и магнитных полей;
применение перегретых паров испаряемой из материала жидкости в качестве теплоносителя (водяные пары, пары органических растворителей - тетрахлорид углерода, хлорбензол и т.д.);
применение комбинированных способов сушки и совмещение различных процессов в одном аппарате;
использование вторичных энергетических и тепловых ресурсов производства (тепло отходящих газов, а также котельных, сушилок и других термических установок).
1.4 Аппаратное обеспечение процесса сушки
1.4.1 Классификация сушилок
По технологическим признакам сушилки можно классифицировать следующим образом:
1) по давлению (атмосферные и вакуумные);
2) по периодичности процесса (периодического, полунепрерывного и непрерывного действия);
3) по способу подвода тепла (конвективные, контактные, радиационные и сушилки с нагревом материала токами высокой частоты);
4) по роду сушильного агента (воздушные, газовые сушилки и сушилки на перегретом или насыщенном паре);
5) по направлению движения материала и теплоносителя (прямоточные, противоточные и перекрестного тока);
6) по тепловой схеме (калориферные, с дополнительным внутренним обогревом, с рециркуляцией части отработанного воздуха, со ступенчатым подогревом и комбинированные, например, со ступенчатым подогревом и рециркуляцией);
7) по способу обслуживания (с ручным обслуживанием и механизированные);
8) по способу нагрева (с паровым, огневым, газовым и электронагревом);
9) по циркуляции теплоносителя (с естественной, искусственной циркуляцией, однократной и многократной циркуляцией).
1.4.2 Основные типы сушилок
Камерные сушилки
Эти сушилки являются аппаратами периодического действия, работающими при атмосферном давлении. Они используются в производствах небольшого масштаба для материалов, допускающих невысокую температуру сушки, например красителей. Материал в этих сушилках сушится на лотках (противнях), установленных на стеллажах или вагонетках находящихся внутри сушильной камеры 1 (рис. 1.2). На каркасе камеры между вагонетками 2 установлены козырьки 3, которые как бы делят пространство камеры на три расположенные друг над другом зоны, вдоль которых последовательно движется сушильный агент. Свежий воздух , нагретый в наружном калорифере 4 , засасывается вентилятором 5 и подается вниз камеры сушилки. Здесь он движется (путь воздуха показан на рисунке стрелками), два раза меняя направление и дважды нагреваясь в промежуточных калориферах 6 и 7 . Часть отработанного воздуха с помощью шибера 8 направляется на смешение со свежим.
Рисунок 1.2 – Камерная сушилка
1- сушильная камера; 2 - вагонетки; 3 - козырьки; 4, 6, 7 - калориферы;
5 – вентилятор; 8 – шибер.
Таким образом, сушилка работает с промежуточным подогревом и частичной рециркуляцией воздуха, т.е. по варианту, обеспечивающему низкую температуру и более мягкие условия сушки.
Однако вследствие сушки в непосредственном толстом слое,сушилки этого типа обладают низкой производительностью и продолжительность сушки в них велика. Кроме того, сушка в них неравномерна из-за неравномерности температур в камере, возникающей за счёт частичного прохода воздуха в вышерасположенные зоны кратчайшим путем (через зазоры). Для соэдания более равномерной циркуляции воздуха в некоторых современных конструкциях камерных сушилок наружный вентилятор заменяют внутренними реверсивными осевыми вентиляторами или применяют эжекторы.
В эжекционных камерных сушилках рециркулирующий отработанный воздух подсасывается свежим, что позволяет уменьшить расход электроэнергии на циркуляцию.
Обслуживание камерных сушилок требует больших затрат ручного труда, что также является существенным недостатком.
Туннельные сушилки
Эти сушилки (рис.1.3) отличаются от камерных тем, что в них соединенные друг с другом вагонетки медленно перемещаются на рельсах вдоль очень длинной камеры прямоугольного сечения (коридора). На входе и выходе коридор имеет герметичные двери, которые одновременно периодически открываются для загрузки и выгрузки материала: вагонетка с высушенным материалом удаляется из камеры, а с противоположного конца в нее поступает новая вагонетка с влажным материалом. Перемещение вагонеток производиться с помощью троса и механической лебедки. Сушильный агент движется прямотоком или противотоком к высушиваемому материалу.
Рисунок 1.3 – Туннельная сушилка
1- вагонетки; 2 - вентилятор; 3 - калорифер; 4 –герметичные двери; 5 – поворотные круги
Туннельные сушилки обычно работают с частичной рециркуляцией сушильного агента, и они используются для сушки больших количеств штучных материалов, например керамических изделий. По интенсивности сушки туннельные сушилки мало отличаются от камерных: им присущи основные недостатки последних (длительная и неравномерная сушка, ручное обслуживание).
Ленточные сушилки
В этих сушилках сушка материалов производится непрерывно при атмосферном давлении. В камере 1 сушилки (рис. 1.4) слой высушиваемого материала движется на бесконечной ленте 2, натянутой между ведущим 3 и ведомым 4 барабанами. Влажный материал подается на один конец ленты, а подсушенный удаляется с другого конца. Сушка осуществляется горячим воздухом или топочными газами, которые движутся противотоком или перекрестным током к направлению движения материала.
В одноленточных сушилках со сплошной лентой обычно наблюдается неравномерное высушивание материала во внутренней части слоя, обращенной к ленте, конечная влажность выше, чем в его наружной части, омываемой газами или воздухом.
Более эффективно применение многоленточных сушилок с лентами из металлической сетки. В них сушильный агент движется перпендикулярно плоскости ленты сквозь находящийся на ней слой материала (перекрестный ток). При пересыпании материала с ленты на ленту увеличивается поверхность его соприкосновения с сушильным агентом, что способствует возрастанию скорости и равномерности сушки. Ленточные сушилки могут работать по различным вариантам сушильного процесса.