Смекни!
smekni.com

Применение нанотехнологий в автомобилестроении (стр. 2 из 10)

Именно размерными эффектами определяются многие уникальные свойства наноматериалов. Для различных характеристик (механических, электрических и др.) критический размер может быть различным, как и характер изменений (равномерный или неравномерный). Например, электропроводность начинает зависеть от размера частицы при уменьшении кристалла вещества до размеров 10-20 нм и менее.

Доля атомов, находящихся в поверхностном слое (толщиной около 1 нм), естественно, растет с уменьшением размера частиц вещества. Поверхностные атомы обладают свойствами, отличающимися от "внутренних" атомов, поскольку они связаны с соседями иначе, чем внутри вещества. В результате на поверхности велика вероятность протекания процессов изменения структурного расположения атомов и их свойств. В результате поверхность (или межфазная граница) рассматривается как некое новое состояние вещества.

Учитывая абсолютные размеры наночастиц, с определенными допущениями можно считать, что наночастица представляет собой вещество, близкое по свойствам к межфазной границе. Например, нанотрубки имеют высокую удельную плотность поверхности, поскольку вся масса сосредоточена в поверхностном слое.

Важнейшими свойствами наноструктур, отличающими их от обычных материалов, являются повышенная диффузионная и миграционная способность атомов, молекул веществ и электронов по поверхности твердых наноструктур, а для жидких наноструктур - ускоренная диффузия внутри них, повышенная прочность изолированных твердых наноструктур и способность твердых наноструктур к самоорганизации и самосборке.

1) Повышенная диффузионная и миграционная способность атомов и молекул веществ по поверхности и внутри наноструктур:

Жидкости внутри микротрещин и микропор нанометровой ширины являются жидкими наноструктурами, обладающими своеобразными особенностями, из которых важнейшей является ускоренная диффузия растворенных в них веществ под действием осмотической составляющей СРПС.

2) Повышенная миграционная способность атомов по поверхности твердых наноструктур:

Как известно, диффузия по поверхности твердых веществ осуществляется на несколько порядков быстрее, чем в их объеме.

3) Ускоренное движение электронов по поверхности твердых наноструктур - сверхпроводимость электрического тока:

Здесь, как и в предыдущем случае, можно выделить два уровня ускоренного движения частиц, в данном случае электронов, по поверхности веществ. Первый уровень - движение электронов вдоль поверхности обычного проводника при обычных температурах. Ускоренное движение электронов в этом случае хорошо известно и практически используется в ускорителях заряженных частиц Ван-дер-Граафа (Гершензон и др., 1980).

4) Ускоренное движение электронов по поверхности твердых наноструктур:

На поверхности обычных проводников Т-СРПС, создавая разуплотненный поверхностный слой, способствует образованию слоя с более редким расположением атомов в нем. Поэтому в нем электрический ток протекает с меньшим сопротивлением, а значит, и с большей скоростью, чем в глубине проводника, создавая первый уровень ускоренного движения электронов.

5) Ускоренное движение электронов по поверхности твердых наноструктур:

В научной литературе проводят аналогию между сверхпроводимостью тока и сверхтекучестью жидкого гелия, объясняя, что жидкий гелий также образует единую когерентную сверхтекучую систему - конденсат, который тоже течет через щели без какого-либо сопротивления.

6) Повышенная прочность на разрыв изолированных твердых наноструктур.:Известно, что прочность на разрыв, например углеродных нанотрубок, в несколько десятков раз больше самой прочной стали при плотности в 6 раз меньшей (Головин, 2007). Удовлетворительного объяснения этому в научных работах пока не дано.

7) Способность твердых наноструктур к самоорганизации и самосборке:

Наноструктуры, находящиеся в жидкой, газовой среде и в вакууме, обладают максимальными возможностями к самоорганизации и самосборке, так как эти среды не мешают им в полной мере проявить эти свои свойства.


3. Нанотехнологии в автомобилестроении

Автомобили будущего станут более комфортными и интеллектуальными, основанными на легких и прочных материалах, миниатюризации и новых энергетических установках. Практически каждая деталь автомобиля может быть усовершенствована при помощи нанотехнологий. Сегодня нанотехнологии внедряют несколько крупнейших производителей, но к 2010 году их будут использовать все автомобилестроители и большинство их поставщиков. 70 ведущих мировых автомобилестроителей, включая Renault, General Motors, BMW, Toyota, Audi, Ford, Volkswagen, Mercedes-Benz, Opel, Ferrari, MAN, FIAT, Volvo, Hyundai, Honda, Nissan, Chrysler, Jaguar, Porsche, Peugeot, Saab, Rover, Citroen, Huachangcar, Mazda, Alfa Romeo, Asia Motors, Mitsubishi, Vauxhall, Subaru и др., провели совместное исследование возможностей применения нанотехнологий в автомобилях с 2002 до 2015 года.

Мы предлагаем Вашему вниманию краткий обзор возможностей нанотехнологий в усовершенствовании автомобиля. Если Вы захотите использовать их на своем предприятии, пожалуйста свяжитесь с нами.

- Генерация и хранение энергии

- Топливные ячейки

- Солнечные батареи

- Хранение энергии

- Электричества

- Водородного топлива

- Углеводородного топлива

- Топливные катализаторы

Наноструктурированные материалы / нанокомпозиты / наночастицы

- Легкие каркасные материалы

- Огнеупорные и термостойкие материалы: Увеличение прочности, жесткости и долговечности

- Умные, сверхмягкие рессоры

- Антифрикционные и противоизносные покрытия

- Материалы со сверхмалым коэффицентом теплового расширения

- Стекла с управляемыми оптическими свойствами

- Долговечные шины с оптимальными свойствами

- Функциональные краски и покрытия

- Самоочищающиеся

- Самовосстанавливающиеся

- Нецарапающиеся

- Антикоррозионные

- Радиопоглощающие

- Цветовые эффекты

Со специальными оптическими свойствами

- Теплоотражающие

Программируемые материалы

- Другие функциональные материалы

- Наноэлектроника

- Сверхточные сенсоры и анализаторы

- Системы GPS-навигации на основе МЭМС-датчиков

- Сверхточные микроакселерометры

- Мониторинг перемещения

- Мониторинг давления

- Мониторинг заклинивания и повреждений

- Мониторинг износа

Биометрические системы

- Мониторинг климата

- Интеллектуальное управление двигателем

- Дисплеи, внешнее и внутреннее освещение

- Электроника, работающая в широком диапазоне температур

- Противоугонные системы

- Датчики контроля безопасности и окружения

- Акселерометры подушек безопасности

- Сверхъемкие аккумуляторы

Обработка и передача информации

- Обработка изображений

- Автомобильная телематика

- Дистанционное управление

- Мультимедиа-архитектура

- Элементы искусственного интеллекта

- Интеграция CMOS-микроэлектроники в системы управления

Биомедицинские приложения

- Гигиена

- Система эвакуации

- Интерактивный эргономичный дизайн

- Снижение вибрации и шума

Производство

- Измерение и контроль

- Инструменты, станки и машины

- Автоматизация и телеуправление

- Снижение стоимости сырья

- Снижение энергопотребления

- Анализ дефектов и структуры материалов

Экология

- Фильтрация и очистка выхлопных газов

- Экологичное производство

- Переработка старых автомобилей

- Биодеградируемые материалы

- Восстановление и ремонт

3.1 Применение нанотехнологий в автомобильной промышленности

Автомобильная промышленность Германии, являющаяся одной из наиболее важных отраслей производства, уже сейчас серьезно заинтересована в НТ и активно изучает возможности внедрения новых материалов и технологий, особенно в связи с экологией, безопасностью движения и обеспечением комфорта. НТ в автомобилестроении может быть связана с решением множества проблем и технических задач, относящихся к ходовой части, весу конструкции и динамике движения, кондиционированию и снижению выхлопа вредных веществ, уменьшению износа, возможностям вторичной переработки и т. п. Кроме этого, НТ имеют непосредственное отношение к развитию связанных с автомобилестроением информационных систем (например, контроль обстановки на дорогах, коммуникации и т. п.).

Очень большие перспективы коммерческого производства имеет внедрение прозрачных многослойных наноматериалов. В частности, наносимые на стекло металлические покрытия толщиной в несколько нанометров могут одновременно отражать инфракрасное излучение и придавать стеклу дополнительную термостойкость. Для затемненных внутренних стекол в автомобилях можно даже использовать так называемые электрохром-ные составы, которые автоматически настраиваются на соответствующую интенсивность света, а также способствуют уменьшению отражения в циферблатах приборов, что очень трудно осуществить обычными методами. Водоотталкивающие и противоударные покрытия могут наноситься на множество деталей, включая «дворники» и т. п. Еще один очень интересный пример связан с применением микроскопических частиц углерода. В начале 20 века было случайно обнаружено, что введение микрочастиц сажи в каучук приводит к очевидному улучшению качества автомобильных шин. Эффект связан с тем, что частицы сажи «склеивают» каучук и делают шины прочнее, обеспечивая их повышенную износостойкость. Сегодня уже предпринимаются целенаправленные попытки увеличения поверхности частиц сажи и уменьшения их возможного слипания, что позволяет снизить процессы рассеивания (диссипации) энергии в шинах и приводит в целом к повышению их характеристик и снижению расхода горючего в среднем на 4%.

Соответствующая оптимизация сопротивления воздуха, веса автомобиля и приводного устройства привела бы к снижению потребления горючего на 6%, 15% и 28%, в результате чего можно было бы уменьшить выбросы двуокиси углерода. Намеченное Евросоюзом снижение норм выброса угарного газа и частиц (программа Евро-5) к 2008 году может быть достигнуто только путем значительного понижения потребления горючего, для чего настоятельно требуется поиск альтернативных источников питания. Например, в качестве автомобильного топлива очень перспективен экологически почти безопасный метанол, и НТ может сыграть важную роль в производстве новых методик впрыскивания горючего, реформинге топлива, аккумуляции водорода, объединении клеточных электродов и мембран для обмена протонов при сгорании топлива и т. п.