Федеральное агентство по образованию РФ
Государственное образовательное учреждение
Высшего профессионального образования
«Томский политехнический университет»
Химико-технологический факультет
Кафедра ТООС
Группа З5Э31
КОЖУХОТРУБЧАТЫЙ ТЕПЛООБМЕННИК ДЛЯ НАГРЕВАНИЯ СМЕСИ
АЦЕТОН – ВОДА ДО ТЕМПЕРАТУРЫ КИПЕНИЯ
(вариант № 4)
Пояснительная записка к курсовому проекту по дисциплине
«Гидравлика и теплотехника»
Руководитель проекта
доцент Гусева Ж.А.
Исполнитель проекта
студент Кудрявцева Ю.А.
Томск 2007
Федеральное агентство по образованию РФ
Государственное образовательное учреждение
Высшего профессионального образования
«Томский политехнический университет»
Задание №4
на расчетную индивидуальную работу по дисциплине
“Гидравлика и теплотехника”
Выдано студенту: Кудрявцевой Ю.А.
1.Тема: Расчет теплообменника кожухотрубчатого
2. Срок сдачи законченной работы
3. Исходные данные к заданию:
Мольная доля р-ра по нк - 40%;
Расход - 22 т/ч;
Начальная температура раствора – 22С;
Давление в трубном пространстве – 1,6 ата;
Раствор – ацетон+вода;
Давление греющего водяного пара подобрать самостоятельно.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. ТЕПЛОВОЙ РАСЧЁТ
1.1 ТЕМПЕРАТУРНЫЙ РАСЧЁТ
1.2 ОПРЕДЕЛЕНИЕ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ТЕПЛОНОСИТЕЛЕЙ ПРИ СРЕДНИХ ТЕМПЕРАТУРАХ
1.3 ТЕПЛОВОЙ БАЛАНС
1.4 ОПРЕДЕЛЕНИЕ ОРИЕНТИРОВОЧНОЙ ТЕПЛОПЕРЕДАЮЩЕЙ ПОВЕРХНОСТИ И ПОДБОР НОРМАЛИЗОВАННОЙ КОНСТРУКЦИИ ПО СТАНДАРТАМ
1.5 УТОЧНЁННЫЙ РАСЧЁТ ТЕПЛОПЕРЕДАЮЩЕЙ ПОВЕРХНОСТИ
1.6 РАСЧЁТ ТЕПЛОВОЙ ИЗОЛЯЦИИ
2. ГИДРАВЛИЧЕСКИЙ РАСЧЁТ
3. КОНСТРУКТИВНО-МЕХАНИЧЕСКИЙ РАСЧЁТ
3.1 РАСЧЁТ ТОЛЩИНЫ ОБЕЧАЙКИ
3.2 РАСЧЁТ И ПОДБОР ШТУЦЕРОВ
3.3 РАСЧЁТ ТОЛЩИНЫ ТРУБНОЙ РЕШЁТКИ
3.4 РАСЧЁТ ОПОР АППАРАТА
3.5 РАСЧЁТ И ПОДБОР ДНИЩА И КРЫШКИ АППАРАТА
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Теплопередача – это наука о процессах распространения теплоты. Различают три различных способа переноса теплоты: теплопроводность, конвекцию и тепловое излучение. В реальных установках теплота передаётся комбинированным путём, однако вклад этих трёх составляющих в общий перенос теплоты неодинаков и определяется многими условиями: природой теплоносителя, агрегатным состоянием, температурным и гидродинамическим условиям и т.д.
В промышленности теплообмен между рабочими телами (теплоносителями) происходит в специально сконструированных аппаратах, которые называются теплообменниками. Они должны отвечать определённым общим требованиям: обладать высокой тепловой производительностью и экономичностью, обеспечивать заданные технологические условия процесса, быть просты по конструкции, компактны, обладать современным техническим и эстетическим дизайном, иметь длительный срок службы, соответствовать требованиям СНИП и ведомственным правилам Госгортехнадзора. Особые требования предъявляются к обеспечению надёжности работы аппаратов, возможности автоматического регулирования режимно-технологических параметров и аварийного отклонения.
В химической технологии теплообменные аппараты довольно широко распространены, применяются в различных производствах легкой и тяжелой промышленности. Для обеспечения того или иного технологического процесса применяются различные типы теплообменных аппаратов. Основную группу теплообменных аппаратов, применяемых в промышленности, составляют поверхностные теплообменники, в которых теплота от горячего теплоносителя передается холодному теплоносителю через разделяющую их стенку. Другую группу составляют теплообменники смешения, в которых теплота передается при непосредственном соприкосновении горячего и холодного теплоносителей.
Теплообменные аппараты классифицируются:
1. По назначению:
а) холодильники;
б) подогреватели;
в) испарители;
г) конденсаторы.
2. По конструкции:
- изготовленные из труб:
а) теплообменники «труба в трубе»;
б) оросительные теплообменники;
в) погружные змеевиковые;
г) теплообменники воздушного охлаждения;
д) из оребренных труб;
е) кожухотрубчатые теплообменники.
- с неподвижной трубной решеткой;
- с линзовым компенсатором;
- с плавающей головкой;
- с U-образными трубами.
3. По направлению движения теплоносителя:
а) прямоточные;
б) противоточные;
в) с перекрестным движением.
Кожухотрубчатые теплообменные аппараты используются для практической реализации таких процессов, как нагревание (охлаждение), конденсация и испарение. Соответственно аппараты называются теплообменниками, холодильниками, конденсаторами и испарителями.
Теплообменники предназначены для проведения процесса теплообмена между теплоносителями, которые не изменяют своего агрегатного состояния в процессе теплообмена: это газо-жидкостные и жидкостно-жидкостные аппараты для проведения процессов охлаждения и нагревания.
Холодильники предназначены для охлаждения водой или другими нетоксичными, не пожаро- и не взрывоопасными хладагентами жидких и газообразных сред. Работают, как правило, в области минусовых температур.
В соответствии с ГОСТ 15120-79, ГОСТ 15118-79 и ГОСТ 15122-79 кожухотрубчатые теплообменники и холодильники изготавливают двух типов: «Н» - с неподвижными трубными решётками и «К» - с компенсатором температурных напряжений на кожухе.
Необходимость использования компенсатора определяется предельно-допустимой разностью температур стенок труб и кожуха, равной 50ºС или сравнительно большой длиной теплообменных труб (более 6м).
Конденсаторы предназначены для конденсации насыщенных паров. Обычно конденсацию осуществляют на наружной поверхности пучка труб в межтрубном пространстве. В химической промышленности для нагревания жидкостей и газов за счёт теплоты конденсации насыщенных паров чаще всего используется насыщенный водяной пар.
Испарители предназначены для проведения процессов испарения жидкости при кипении. При этом жидкость кипит в трубах, а в межтрубное пространство подаётся греющий агент. В соответствии со стандартом, кожухотрубчатые испарители в этом случае могут быть только одноходовыми и вертикального исполнения [4].
Из нашего технического задания (см. выше) следует, что нам надо подобрать кожухотрубчатый теплообменник (подогреватель) для нагревания насыщенным водяным паром смеси этанол-вода до температуры кипения.
Исходя из условий, которые приведены в техническом задании целесообразно назначить теплообменник типа ТНВ (теплообменник с неподвижными трубными решётками, вертикальный) ГОСТ 15122-79.
Т.к. эти теплообменники используются при температуре жидких и газообразных сред от -70 до +3500С от 0,6 до 16 МПа поверхность теплообмена от 1 до 5000 м2 [1].
Достоинства этого теплообменного аппарата:
а) простота конструкции;
б) непрерывная передача тепла от одного теплоносителя к другому;
в) интенсивный теплообмен.
Недостатки:
а) металлоемкость;
б) температурные деформации;
в) невозможность разборки и чистки трубного пространства.
В итоге для данного процесса необходимо подобрать теплообменник типа ТНВ по ГОСТ 15122-79 и провести для него тепловой, гидравлический и конструктивно-механический расчёты.
1. ТЕПЛОВОЙ РАСЧЁТ 1.1 ТЕМПЕРАТУРНЫЙ РАСЧЁТ
В нашем случае температура горячего теплоносителя (греющего водяного пара) не изменяется, а температура холодного теплоносителя (смеси ацетон-вода) увеличивается вдоль поверхности теплопередачи. Зная это, построим температурную диаграмму чистого противотока для нагрева смеси ацетон-вода водяным паром (рис. 1).
Рисунок 1.1 – Температурная диаграмма.
Из рис. 1 видим, что
.На рис.1.1
- температура горячего, начальная и конечная температуры холодного теплоносителей соответственно.Т.к.
(см. задание на курсовой проект), то нам необходимо найти и .1) Для нахождения конечной температуры холодного теплоносителя построим диаграмму состояния смеси ацетон-вода в координатах
(рис. 1.2). Для этого составим таблицу расчёта (табл. 1.1), основываясь на законах [1]:Рауля
, (1.1) , (1.2)и Дальтона
, (1.3)где
- общее давление смеси; , - парциальные давления низко- и высококипящего компонентов соответственно; и - давления насыщенных паров чистых низко- и высококипящего компонентов; - мольная доля низкокипящего компонента.