Смекни!
smekni.com

Кожухотрубный теплообменник для нагревания смеси ацетон - вода до температуры кипения (стр. 1 из 5)

Кожухотрубный теплообменник для нагревания смеси ацетон - вода до температуры кипения

Федеральное агентство по образованию РФ

Государственное образовательное учреждение

Высшего профессионального образования

«Томский политехнический университет»

Химико-технологический факультет

Кафедра ТООС

Группа З5Э31

КОЖУХОТРУБЧАТЫЙ ТЕПЛООБМЕННИК ДЛЯ НАГРЕВАНИЯ СМЕСИ

АЦЕТОН – ВОДА ДО ТЕМПЕРАТУРЫ КИПЕНИЯ

(вариант № 4)

Пояснительная записка к курсовому проекту по дисциплине

«Гидравлика и теплотехника»

Руководитель проекта

доцент Гусева Ж.А.

Исполнитель проекта

студент Кудрявцева Ю.А.

Томск 2007

Федеральное агентство по образованию РФ

Государственное образовательное учреждение

Высшего профессионального образования

«Томский политехнический университет»

Задание №4

на расчетную индивидуальную работу по дисциплине

“Гидравлика и теплотехника”

Выдано студенту: Кудрявцевой Ю.А.

1.Тема: Расчет теплообменника кожухотрубчатого

2. Срок сдачи законченной работы

3. Исходные данные к заданию:

Мольная доля р-ра по нк - 40%;

Расход - 22 т/ч;

Начальная температура раствора – 22С;

Давление в трубном пространстве – 1,6 ата;

Раствор – ацетон+вода;

Давление греющего водяного пара подобрать самостоятельно.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ТЕПЛОВОЙ РАСЧЁТ

1.1 ТЕМПЕРАТУРНЫЙ РАСЧЁТ

1.2 ОПРЕДЕЛЕНИЕ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ТЕПЛОНОСИТЕЛЕЙ ПРИ СРЕДНИХ ТЕМПЕРАТУРАХ

1.3 ТЕПЛОВОЙ БАЛАНС

1.4 ОПРЕДЕЛЕНИЕ ОРИЕНТИРОВОЧНОЙ ТЕПЛОПЕРЕДАЮЩЕЙ ПОВЕРХНОСТИ И ПОДБОР НОРМАЛИЗОВАННОЙ КОНСТРУКЦИИ ПО СТАНДАРТАМ

1.5 УТОЧНЁННЫЙ РАСЧЁТ ТЕПЛОПЕРЕДАЮЩЕЙ ПОВЕРХНОСТИ

1.6 РАСЧЁТ ТЕПЛОВОЙ ИЗОЛЯЦИИ

2. ГИДРАВЛИЧЕСКИЙ РАСЧЁТ

3. КОНСТРУКТИВНО-МЕХАНИЧЕСКИЙ РАСЧЁТ

3.1 РАСЧЁТ ТОЛЩИНЫ ОБЕЧАЙКИ

3.2 РАСЧЁТ И ПОДБОР ШТУЦЕРОВ

3.3 РАСЧЁТ ТОЛЩИНЫ ТРУБНОЙ РЕШЁТКИ

3.4 РАСЧЁТ ОПОР АППАРАТА

3.5 РАСЧЁТ И ПОДБОР ДНИЩА И КРЫШКИ АППАРАТА

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ВВЕДЕНИЕ

Теплопередача – это наука о процессах распространения теплоты. Различают три различных способа переноса теплоты: теплопроводность, конвекцию и тепловое излучение. В реальных установках теплота передаётся комбинированным путём, однако вклад этих трёх составляющих в общий перенос теплоты неодинаков и определяется многими условиями: природой теплоносителя, агрегатным состоянием, температурным и гидродинамическим условиям и т.д.

В промышленности теплообмен между рабочими телами (теплоносителями) происходит в специально сконструированных аппаратах, которые называются теплообменниками. Они должны отвечать определённым общим требованиям: обладать высокой тепловой производительностью и экономичностью, обеспечивать заданные технологические условия процесса, быть просты по конструкции, компактны, обладать современным техническим и эстетическим дизайном, иметь длительный срок службы, соответствовать требованиям СНИП и ведомственным правилам Госгортехнадзора. Особые требования предъявляются к обеспечению надёжности работы аппаратов, возможности автоматического регулирования режимно-технологических параметров и аварийного отклонения.

В химической технологии теплообменные аппараты довольно широко распространены, применяются в различных производствах легкой и тяжелой промышленности. Для обеспечения того или иного технологического процесса применяются различные типы теплообменных аппаратов. Основную группу теплообменных аппаратов, применяемых в промышленности, составляют поверхностные теплообменники, в которых теплота от горячего теплоносителя передается холодному теплоносителю через разделяющую их стенку. Другую группу составляют теплообменники смешения, в которых теплота передается при непосредственном соприкосновении горячего и холодного теплоносителей.

Теплообменные аппараты классифицируются:

1. По назначению:

а) холодильники;

б) подогреватели;

в) испарители;

г) конденсаторы.

2. По конструкции:

- изготовленные из труб:

а) теплообменники «труба в трубе»;

б) оросительные теплообменники;

в) погружные змеевиковые;

г) теплообменники воздушного охлаждения;

д) из оребренных труб;

е) кожухотрубчатые теплообменники.

- с неподвижной трубной решеткой;

- с линзовым компенсатором;

- с плавающей головкой;

- с U-образными трубами.

3. По направлению движения теплоносителя:

а) прямоточные;

б) противоточные;

в) с перекрестным движением.

Кожухотрубчатые теплообменные аппараты используются для практической реализации таких процессов, как нагревание (охлаждение), конденсация и испарение. Соответственно аппараты называются теплообменниками, холодильниками, конденсаторами и испарителями.

Теплообменники предназначены для проведения процесса теплообмена между теплоносителями, которые не изменяют своего агрегатного состояния в процессе теплообмена: это газо-жидкостные и жидкостно-жидкостные аппараты для проведения процессов охлаждения и нагревания.

Холодильники предназначены для охлаждения водой или другими нетоксичными, не пожаро- и не взрывоопасными хладагентами жидких и газообразных сред. Работают, как правило, в области минусовых температур.

В соответствии с ГОСТ 15120-79, ГОСТ 15118-79 и ГОСТ 15122-79 кожухотрубчатые теплообменники и холодильники изготавливают двух типов: «Н» - с неподвижными трубными решётками и «К» - с компенсатором температурных напряжений на кожухе.

Необходимость использования компенсатора определяется предельно-допустимой разностью температур стенок труб и кожуха, равной 50ºС или сравнительно большой длиной теплообменных труб (более 6м).

Конденсаторы предназначены для конденсации насыщенных паров. Обычно конденсацию осуществляют на наружной поверхности пучка труб в межтрубном пространстве. В химической промышленности для нагревания жидкостей и газов за счёт теплоты конденсации насыщенных паров чаще всего используется насыщенный водяной пар.

Испарители предназначены для проведения процессов испарения жидкости при кипении. При этом жидкость кипит в трубах, а в межтрубное пространство подаётся греющий агент. В соответствии со стандартом, кожухотрубчатые испарители в этом случае могут быть только одноходовыми и вертикального исполнения [4].

Из нашего технического задания (см. выше) следует, что нам надо подобрать кожухотрубчатый теплообменник (подогреватель) для нагревания насыщенным водяным паром смеси этанол-вода до температуры кипения.

Исходя из условий, которые приведены в техническом задании целесообразно назначить теплообменник типа ТНВ (теплообменник с неподвижными трубными решётками, вертикальный) ГОСТ 15122-79.

Т.к. эти теплообменники используются при температуре жидких и газообразных сред от -70 до +3500С от 0,6 до 16 МПа поверхность теплообмена от 1 до 5000 м2 [1].

Достоинства этого теплообменного аппарата:

а) простота конструкции;

б) непрерывная передача тепла от одного теплоносителя к другому;

в) интенсивный теплообмен.

Недостатки:

а) металлоемкость;

б) температурные деформации;

в) невозможность разборки и чистки трубного пространства.

В итоге для данного процесса необходимо подобрать теплообменник типа ТНВ по ГОСТ 15122-79 и провести для него тепловой, гидравлический и конструктивно-механический расчёты.

1. ТЕПЛОВОЙ РАСЧЁТ 1.1 ТЕМПЕРАТУРНЫЙ РАСЧЁТ

В нашем случае температура горячего теплоносителя (греющего водяного пара) не изменяется, а температура холодного теплоносителя (смеси ацетон-вода) увеличивается вдоль поверхности теплопередачи. Зная это, построим температурную диаграмму чистого противотока для нагрева смеси ацетон-вода водяным паром (рис. 1).

Рисунок 1.1 – Температурная диаграмма.

Из рис. 1 видим, что

.

На рис.1.1

- температура горячего, начальная и конечная температуры холодного теплоносителей соответственно.

Т.к.

(см. задание на курсовой проект), то нам необходимо найти
и
.

1) Для нахождения конечной температуры холодного теплоносителя построим диаграмму состояния смеси ацетон-вода в координатах

(рис. 1.2). Для этого составим таблицу расчёта (табл. 1.1), основываясь на законах [1]:

Рауля

, (1.1)

, (1.2)

и Дальтона

, (1.3)

где

- общее давление смеси;
,
- парциальные давления низко- и высококипящего компонентов соответственно;
и
- давления насыщенных паров чистых низко- и высококипящего компонентов;
- мольная доля низкокипящего компонента.