Рисунок 2.2 Схема нумерации поверхностей полумуфты правой
Основными поверхностями полумуфта сопрягается в машине отвечающими им основными поверхностями других деталей.
Остальные поверхности являются свободными и подобных функций не выполняют. Однако с позиции механической обработки общим признаком основных поверхностей нужно считать не отмеченную выше роль поверхности в агрегате, а то, что эти поверхности имеют значительно более высокую, чем другие, заданную точность обработки.
Примерное количество операций обработки основной поверхности можно определить по следующим формулам:
-из условия обеспечения заданной точности размера
,где
- допуск размера заготовки, мкм; - допуск размера детали, мкм; - коэффициент, его значение выбирают из диапазона (0,35…0,55). Обычно принимают 0,45.-из условия обеспечения заданной шероховатости поверхности
,где
- шероховатость поверхности заготовки, мкм; - шероховатость поверхности детали, мкм; - коэффициент, значение выбирают из того же диапазона. Обычно принимают 0,40.В результате выявляется как количество операций обработки основных поверхностей, так и методы, необходимые для выполнения каждой операции.
То же самое будет справедливо и для любой свободной поверхности. Разница лишь в том, что ввиду малой точности свободной поверхности количество операций ее обработки получается меньшим.
В качестве примера произведем расчет наружной цилиндрической поверхности 10, координированной размером Ø35k6.
Шероховатость поверхности, заданная чертежом детали, составляет
1,25. Шероховатость поверхности исходной заготовки (после штамповки) принимаем равной =80.Число переходов, необходимое для обеспечения заданной точности размера, определим следующим образом:
Потребное для достижения заданной шероховатости число переходов равняется:
3,01Принимаем количество ступеней обработки равное 3,
4.Заданная точность размера цилиндрической поверхности 10 достижима в результате принятого количества ступеней обработки. Шероховатость заготовки поверхности должна изменяться по переходам следующим образом: по параметру
20 - 10 - 5 - 2,5 - 1,25. Точность поверхности заготовки должна изменяться по переходам IT14 – h12 – h10 – h8 – k6Формируем возможный вариант обработки:
1) Точение черновое – h12,
10;2) Точение получистовое – h10,
5;3) Точение чистовое – h8,
2,5;4) Шлифование – k6,
1,25;Аналогично производим расчеты и прорабатываем варианты обработки других поверхностей детали. Результаты сводим в таблицу 2.2.
2.4 Разработка, обоснование, оптимизация и оформление сводной карты и предварительного плана технологического процесса изготовления полумуфты правой
В настоящее время большинство вновь создаваемых технологических процессов создаются в электронном виде. Этому способствуют достоинства электронных носителей и способов обработки информации:
- возможность создания и копирования в кратчайшие сроки (определяемые производительностью компьютера) больших объемов информации;
- более высокая долговечность электронных носителей информации (CD-ROM) по сравнению с аналогичными бумажными;
- хранимая информация занимает значительно меньшие физические объемы, не является пожароопасной;
- возможность объединения различных компьютеров в единую локальную сеть с возможностью обмена данными, что ускоряет процесс проектирования;
- простота внесения изменений во все экземпляры документа, вне зависимости от места его нахождения;
- возможность структурирования пользователей по правам доступа;
- возможность работы с отдельными различными частями документа одновременно нескольких пользователей без повреждения исходного образца и т.п.
Вышеперечисленные достоинства свидетельствуют о преимуществе виртуальных способов хранения информации перед физическими в условиях современного общества.
Для большинства предприятий современной промышленности хранение всей документации, в том числе и технологической, в виртуальном виде стало обязательной к исполнению нормой.
Технологические процессы в электронном виде легче создавать и, при необходимости, корректировать.
В качестве основы при выполнении электронной версии плана технологического процесса изготовления вала винта была принята предварительная версия, разработка которой изложена в п.п. 2.3, 2.4. При создании технологического процесса был использован пакет автоматизированного компьютерного проектирования Компас 7+.
При создании электронной версии исходный технологический процесс был несколько усовершенствован и откорректирован – было окончательно определено место и содержание вспомогательных операций в общем плане технологического процесса (были добавлены слесарные операции и несколько изменен порядок их следования).
Также было определено общее место операций термообработки, окончательно выбран тип и назначение термообработки.
2.5 Расчёты припусков на обработку и операционных размеров-диаметров всех цилиндрических поверхностей нормативным методом
полумуфта правый деталь поверхность
В случае расчёта припусков нормативным методом рекомендованный припуск 2Zрек не вычисляется по составляющим, а назначается из таблиц по рекомендациям [3,с.112]. Заполнение всех последующих граф начинается с последней ступени обработки, для которой расчетный размер равен размеру готовой детали.
Расчётные значения размеров для вала на предшествующих ступенях обработки определяются как сумма расчётного размера Dрасч и соответствующего ему рекомендованного припуска 2Zрек на данной ступени обработки:
Расчётные значения размеров для отверстия на предшествующих ступенях обработки определяются как разница расчётного размера Dрасч и соответствующего ему рекомендованного припуска 2Zрек на данной ступени обработки:
.Минимальный припуск 2Zmin на данной ступени обработки считается, как разница между рекомендованным значением припуска на данной обработке и допуском на размер на предшествующей обработке:
.Принятый припуск принимается исходя из условия:
для лезвийного инструмента для доводочных операций.Все данные сводим в таблицу 2.3.
2.6 Расчёты припусков на обработку и операционных размеров-диаметров цилиндрических поверхностей расчётно-аналитическим методом
При расчетно-аналитическом методе рассчитывают минимальный припуск для тел вращения на диаметр определяют по следующей зависимости[3, с.96] :
2zmin=2*(Rzi-1+hi-1+
), где- Rzi-1 – высота неровностей поверхности, оставшихся при выполнении предшествующего перехода, мкм;
- hi-1 – глубина дефектного поверхностного слоя, возникшая на предшествующем переходе [3,с.89] ,мкм;
- Di-1 – пространственные отклонения, возникшие на предшествующем переходе,мкм:
D =
;где
- Dкор и Dсм – пространственные отклонения, обусловленные соответственно короблением заготовки и смещением ее элементов [3, с.108];
Δкор= Δкор*Ку;
Δсм=Δсм*Ку,
где
- Ку – коэффициент уточнения [3,с.18];
- ei – погрешность установки на данной операции [3,с.20];
e=eб+eз,
где
- eб и eз – погрешность базирования и закрепления соответственно.
Расчетный припуск определяется:
2zном=2zmin+Тi-1,