Смекни!
smekni.com

Технологические схемы производства различных видов керамики (стр. 9 из 12)

Оксидные огнеупоры (oxide refractories) - огнеупоры, содержащие > 97% высокоогнеупорных оксидов или их соединений и твердых растворов. Формованные оксидные огнеупоры изготовляют преимущественно из тонкозернистых порошков прессов, или литьем из суспензий с последующим обжигом, а неформованные оксидные огнеупоры - измельчением оксидов, обычно после предварительного обжига и введения необходимых добавок. В металлургии оксидные огнеупоры применяют в виде изделий из технической керамики для аппаратуры при измерении высоких температур, датчиков контроля масс, доли кислорода в стали, тиглей для лабораторных плавильных печей, вкладышей в разлив, устройствах и др.

Периклазовые огнеупоры (periclase (mag-nesite) refractories) - магнезиальные огнеупоры, содержащие > 85% MgO. Периклазовые огнеупоры изготовляют из периклазового порошка с добавлением клеящей связки обжигом при 1600-1900°С; для безобжиговыех периклазовых огнеупоров используют связки из лигносульфонатового сульфата магния и др. Периклазовые огнеупоры применяют для футеровки стенок мартеновских печей, миксеров, печей для плавки меди и никеля, высокотемпературных нагревательных печей, леток кислородных конвертеров и др., а также в виде плит шиберных затворов сталеразливочных ковшей, стаканов для разливки сталей, пористых фурм для продувки стали газами и т.п. Неформованные периклазовые огнеупоры используют для изготовления мертеля, металлургических (заправочных) порошков, набивных масс для вакууматоров стали, индукционных печей и др.

Периклазоуглеродистые огнеупоры (periclase (magnesite)-carbon refractories) - огнеупоры, изготовленные из периклазового порошка с добавлением 6-25% природного или искусственного графита и органической связки (например, фенольной порошкообразной с этиленгли-колем или бакелита). Периклазоуглеродистые огнеупоры применяют для футеровки устройств для подачи газа снизу в конвертерах с комбинированной продувкой и ответственных участков стен мощных электродуговых печей; для шлакового пояса электродуговых печей и сталеразливочных ковшей, а также шиберных затворов.

Плавленые огнеупоры (fused refractories) - огнеупоры, изготовленные расплавлением огнеупорных материалов и разливкой в формы. Для плавки большинства огнеупорных материалов используют электродуговые печи, а кварца - печи сопротивления и кислородные горелки. Корундовые и корундомуллитовые плавленые огнеупоры применяют в виде блоков для изготовления подин нагреватательных печей и колодцев, днищ вакуум-камер и др., бадделеитокорундовые кварцевые плавленые огнеупоры - для футеровки стекловарных печей. Порошки плавленых периклаза, глинозема и шпинелей используют для изготовления огнеупорных изделий и бетонов. Корундовые порошки из глинозема и боксита применяются также в производстве абразивов.

Полукислые огнеупоры (semi-silicious (silica-acid) refractories) - алюмосиликатные огнеупоры с массовой долей А12О3 от 14 до 28 %. Полукислые огнеупоры применяют преимущественно для малоответственных участков футеровок металлургических агрегатов, в т.ч. коксовых печей, в виде капсул для определения серы и углерода в чугуне, стали и др.

Смолодоломитовые огнеупоры (tar-dolomite refractories) - формованные на прессах изделия из порошка обожженного доломита (крупность зерен до 6-8 мм), смешанного при нагревании до 100-120°С с 4-6% каменноугольной смолы или пека. Смолодоломитовые огнеупоры имеют кажущуюся плотность 2800-2900 кг/м3, предел прочности при сжатии 2000-4000 МПа, устойчивы против основных шлаков. При добавке в массу магнезитового порошка изделие называются смолодоломитомагнезитовыми. Смолодоломитовые огнеупоры применяются для футеровки кислородных конвертеров. Иногда смолодоломитовые огнеупоры применяют в кладке дуговых сталеплавильных печей.

Смоломагнезитовые огнеупоры (tar-magnesite refractories) - изделия и массы, приготовленной из обожженного магнезитового (периклазового) порошка смешением при нагреве до 100-120°С с 4-6% каменноугольной смолы или пека. При содержании примеси < 2-3 % СаО стойки к гидратации на воздухе; применение аналогично смолодоломитовым огнеупорам.

Углеродистые огнеупоры (carbon refractories) - огнеупоры, состоящие преимущественно из свободного углерода или содержащие углерод в качестве основного компонента. К углеродистым огнеупорам относят: угольные и графитированные блоки, изготовленные из кокса и термоантрацита с каменноугольной смолой, пеком, битумом, антрацитовым маслом, обжигаемые при 1100-1450°С; графитированные изделия из нефтяного кокса с графитовой структурой и малым содержанием золы, получаемые обжигом при > 2000°С; пирографит - продукт разложения углеродсодержащего газа на нагретой поверхности и др. К углеродистым огнеупорам относят также углеродсодержащие огнеупоры, изготовленные из графита, огнеупорной глины, шамота (в т.ч. высокоглиноземистого), корунда и т.п. Углеродистые огнеупоры отличаются высокой теплопроводностью, низким ТКЛР, хорошей стойкостью при взаимодействии с расплавами металлов и шлаками. Углеродистые огнеупоры применяют для футеровки нижнего строения домен, печей, электротермических печей, агрегатов для плавки свинца, меди и др., а также для изготовления погружных стаканов, стопоров-моноблоков, вкладышей для изложниц, тиглей для плавки цветных металлов и др. Неформованные углеродистые огнеупоры из коксрвых порошков на каменноугольной смоле применяют для заполнения швов кладки, углеродсодержащие - для футеровки желобов домен, печей и др.

Шамотные огнеупоры (fireclay refractories) - алюмосиликатные огнеупоры, содержащие 28-45% А12О3 и 50-70 SiO2. Технология производства формованных шамотных огнеупоров включает: обжиг глины (каолина) при 1300-1500°С во вращающихся или шахтных печах, измельчение полученного шамота, смешивание со связующей глиной и водой (иногда с добавлением других связующих материалов), формование, сушку и обжиг при 1300-1400°С. Шамотные огнеупоры применяют для футеровки доменных печей, сталеразливочных ковшей, нагревательных и обжиговых печей, котельных топок и др., а также для изготовления сифонных изделий для разливки стали. Неформованные шамотные огнеупоры изготовляют из измельчения шамота и связующих материалов и применяют в виде мертелей, набивных масс, порошков, заполнителей бетонов и др. при выполнении и ремонте огнеупорных футеровок разных тепловых агрегатов.

16 Искусственные пористые заполнители, основы технологии производства, основные виды и свойства легких заполнителей

В зависимости от происхождения пористые заполнители делят па природные и искусственные. Природные заполнители получают путем рассева или частичного дробления и рассева пористых горных пород вулканического или осадочного происхождения. К заполнителям вулканического происхождения относят щебень и песок из пемзы, вулканического шлака и вулканического туфа. Заполнителями осадочного происхождения являются: щебень и песок из пористых известняков и доломитов, известняков-ракушечников, известковых туфов, диатомита, трепела и др. Искусственные заполнители получают путем термической обработки силикатного сырья с последующим дроблением и рассевом, разделяют на две подгруппы: отходы промышленности и специально изготовленные заполнители. Заполнители —отходы промышленности — щебень и песок из топливных шлаков, а также из отвального металлургического шлака. К специально изготовленным заполнителям относят: керамзитовый гравий и песок, гравий полый керамический, аглопоритовый щебень и песок, шлаковую пемзу, гранулированный доменный шлак, щебень и песок из вспученных перлита и вермикулита и др. Важнейшими характеристиками пористых заполнителей являются их объемная масса и прочность при сжатии.

Из применяемых для легких бетонов пористых заполнителей наиболее экономичными являются природные в том случае, когда не требуется их транспортировка (местные материалы). Однако в большинстве случаев значительно больший эффект применения в легких бетонах имеют искусственные заполнители.

17 Сухой, пластический и шликерный способы производства керамзита

Керамзитовый гравий (керамзит) представляет собой пористый материал округлой формы с оплавленной поверхностью, получаемый в результате вспучивания глин при обжиге. Аглопоритовый щебень (аглопорит) — пористый кусковой материал, получаемый методом спекания на решетках агломерационных машин различного силикатного сырья. После спекания отходов от переработки и сжигания угля, а также глинистого сырья, на агломерационных решетках образуется пористая глыба, которая и подвергается дроблению и рассеву. Щебень должен выдержать не менее 15 циклов попеременного замораживания и оттаивания. Преимуществом аглопоритового щебня по сравнению с керамзитом является более широкое распространение исходного сырья. Однако этот щебень отличается значительной открытой пористостью, что требует большего расхода цемента, чем в бетонах на керамзитовом заполнителе, и повышает объемную массу бетона.

Сущность технологического процесса производства керамзита состоит в обжиге глиняных гранул по оптимальному режиму. Для вспучивания глиняной гранулы нужно, чтобы активное газовыделение совпало по времени с переходом глины в пиропластическое состояние. Между тем в обычных условиях газообразование при обжиге глин происходит в основном при более низких температурах, чем их пиропластическое размягчение. Например, температура диссоциации карбоната магния — до 600°С, карбоната кальция — до 950 °С, дегидратация глинистых минералов происходит в основном при температуре до 800 °С, а выгорание органических примесей еще ранее, реакции восстановления окислов железа развиваются при температуре порядка 900 °С, тогда как в пиропластическое состояние глины переходят при температурах, как правило, выше 1100 °С.