Смекни!
smekni.com

Обеззараживание воды (стр. 1 из 3)

Методы обеззараживания воды

При предварительном хлорировании воды, коагулировании ее примесей с последующим отстаиванием и фильтрованием не удается достичь полного удаления болезнетворных микроорганизмов. До 10% хлоррезистентных бактерий и вирусов, среди которых могут быть и патогенные, сохраняют свою жизнеспособность. Поэтому заключительным этапом подготовки воды питьевой кондиции является ее обеззараживание. Использование для питья подземной воды в большинстве случаев возможно без обеззараживания.

Эффект обеззараживания воды контролируют, определяя общее число бактерий в 1 см3 воды и количество индикаторных бактерий группы кишечной палочки в 1 л воды после ее обеззараживания. По ГОСТ 2874—82 «Вода питьевая» общее числа бактерий в 1 см3 неразбавленной воды должно быть не более 100, а количество бактерий группы кишечной палочки в 1 л (коли-индекс) — не более 3. Объем воды, в котором содержится одна кишечная палочка (коли-титр), должен быть не менее 300 мл.

Использование кишечной палочки в качестве индикаторного микроорганизма для оценки эффекта обеззараживания воды обусловлено следующими соображениями:

— присутствие кишечной палочки в воде определить проще,, чем другие бактерии кишечной группы;

— кишечная палочка всегда присутствует в кишечнике человека и теплокровных животных;

— присутствие ее в воде источника свидетельствует о его загрязнении фекальными сбросами;

— окислители, используемые при обеззараживании воды, летально действуют на кишечную палочку труднее, чем на патогенные микроорганизмы, вызывающие заболевания кишечно-желудочного тракта;

— кишечная палочка безвредна и является лишь контрольным микроорганизмом, характеризующим бактериальную загрязненность воды.

В технологии водоподготовки известно много методов обеззараживания воды, которые можно классифицировать на четыре основные группы: термический; с помощью сильных окислителей; олигодинамия (воздействие ионов благородных металлов); физический (с помощью ультразвука, радиоактивного излучения, ультрафиолетовых лучей).

Из перечисленных методов наиболее широко применяют методы второй группы. В качестве окислителей используют хлор, диоксид хлора, озон, йод, марганцовокислый калий; пероксид водорода, гипохлорит натрия и кальция. В свою очередь, из перечисленных окислителей на практике отдают предпочтение хлору, озону, гипохлориту натрия. Выбор метода обеззараживания воды производят, руководствуясь расходом и качеством обрабатываемой воды, эффективностью ее предварительной очистки, условиями поставки, транспорта и хранения реагентов, возможностью автоматизации процессов и механизации трудоемких работ.

Обеззараживанию подвергается вода, уже прошедшая предшествующие стадии обработки, коагулирование, осветление и обесцвечивание в слое взвешенного осадка (или отстаивание), фильтрование, так как в фильтрате отсутствуют частицы, на поверхности или внутри которых могут находиться в адсорбированном виде бактерии и вирусы, оставаясь, таким образом, вне воздействия обеззараживающих средств.

Электролизные установки для обеззараживания воды

Необходимость соблюдения особых мер предосторожности при транспортировке и хранении токсичного хлора является недостатком метода хлорирования воды. Этот недостаток особенно ощутим в нашей стране при обширности ее территории, когда хлор приходится перевозить на большие расстояния от заводов-поставщиков. Опасность утечки хлора на базисных складах водоочистных комплексов, расположенных вблизи населенных пунктов, во многих случаях препятствует применению этого метода обеззараживания воды. Использование хлорной извести и гипохлорита кальция технически просто, но дорого для крупных водоочистных комплексов.

Одним из наиболее перспективных способов обеззараживания питьевых вод на водоочистных комплексах с суточным расходом хлора до 50 кг является использование гипохлорита натрия (NaCIO), получаемого на месте потребления путем электролиза растворов поваренной соли или минерализованных вод, содержащих не менее 20 мг/л хлоридов (установка «Поток»). Электрохимический способ получения гипохлорита натрия основан на получении хлора и его взаимодействии со щелочью в одном и том же аппарате — электролизере.

В настоящее время в нашей стране серийно выпускается унифицированный ряд непроточных электролизных установок типа ЭН производительностью от 1 до 100 кг активного хлора в сутки. Для небольших водоочистных установок рекомендуются электролизеры ВИЭСХ (0,1 ...0,2 кг/сут хлора), а также электролизеры ЭН-1 и ЭН-5 производительностью 1 и 5 кг активного хлора в сутки. При необходимости можно осуществлять централизованное получение гипохлорита натрия на одном из пунктов с последующей доставкой его к отдельным потребителям. В этом случае могут применяться установки ЭН-25 или ЭН-100 производительностью 25 и 100 кг активного хлора в сутки. Количество электролизеров должно быть не более трех, из которых один резервный.

Электролизная установка непроточного типа (рис. 1) состоит из следующих основных узлов: бака для растворения соли, электролизера с зонтом вытяжной вентиляции, бака-накопителя, гипохлорита натрия, выпрямительного агрегата и элементов автоматики. Она работает следующим образом. В растворный бак загружают поваренную соль, заливают воду и с помощью насоса перемешивают до получения насыщенного (280... 300 г/л) раствора поваренной соли. Затем раствор, с помощью насоса передают в электролизер, где разбавляют водопроводной водой до рабочей концентрации (100... 120 мг/л). Готовый раствор сливают в бак-накопитель, откуда дозируют в обрабатываемую воду. Технологические характеристики электролизеров непроточного типа приведены в табл. 1.

Электролизеры рекомендуется устанавливать в отдельном помещении. Допускается совместное расположение в одном помещении электролизера и бака-накопителя гипохлорита натрия. Раствор гипохлорита натрия должен поступать в бак-накопитель самотеком, для чего перепад высот между сливным патрубком электролизера и баком-накопителем должен быть не менее 0,1 ... 0,2 м.

Обеззараживание воды на установках производительностью до 5 тыс. м3/сут может быть достигнуто прямым ее электролизом при исходном содержании хлоридов не менее 20 мг/л и жесткости до 7 мг-экв/л. По Г. Л. Медришу, процесс протекает в два этапа: электрохимическое получение окислителей и их смешивание с обеззараживаемой водой. Одним из основных факторов прямого электролиза является вид применяемого анода, оптимальны платино-титановые аноды (ПТА) и окисно-рутениевые аноды (ОРТА).


Отечественная промышленность серийно выпускает установки прямого электролиза «Поток» с анодами из диоксида рутения и катодами из титана, которые чередуются с зазором между пластинами 3 мм. Установка состоит из электролизера, блока питания и замкнутого кислотного контура. Электролизер выполнен в форме параллелепипеда, внутри которого размещен пакет электродов. Кислотный контур предназначен для периодической промывки аппарата 3... 5%-ным раствором кислоты для борьбы с катодным солеотложением. При одноразовом проходе под давлением обрабатываемой воды снизу вверх в межэлектродном пространстве электролизера обеспечивается ее обеззараживание, величина остаточного хлора в воде через 30 мин контакта составляет 0,3 ... 0,5 мг/л. В табл. 2 приведены параметры работы установки «Поток».

Таблица 2

Параметры Значения параметров при содержании хлоридов в исходной воде, мг/л
20 ... 50 50 ... 100 100 ... 200
Доза хлора, г/м3 1 1 1
Производительность, м3/ч, при коэффициенте выхода хлора по току:
0,2 5...7 8 ... 10 9 ... 11
0,4 8...9 11...13 14 ... 16
0,6 11...12 15...17 20 ... 23
0,8 14...16 20...24 28 ... 32
Напряжение, В 8...11 6...8 4 ... 6
Анодная плотность тока, А/м2 80 ... 100
Межэлектродное расстояние, мм 3 ... 5

Как показали расчеты и практика, обеззараживание подземных вод предпочтительно прямым электролизом в рамках применимости данного метода.

Озонирование воды

Одним из наиболее сильных окислителей, уничтожающих бактерии, споры и вирусы (в частности, вирусы полиомиелита), является озон. Несомненным преимуществом озонирования является и то, что при этом одновременно с обеззараживанием происходит обесцвечивание воды, а также ее дезодорация и улучшение вкусовых качеств. Озон не изменяет природные свойства воды, так как его избыток (непрореагировавший озон) через несколько минут превращается в кислород.

Озон 03, используемый для озонирования, получают из атмосферного воздуха в аппаратах, называемых озонаторами, в результате воздействия на него «тихого» (т. е. рассеянного без искр) электрического заряда, сопровождающегося выделением озона. Общая схема установки по озонированию показана на рис. 14.8. Озонаторный генератор представляет собой горизонтальный цилиндрический аппарат (вариант) с вмонтированными в него из нержавеющей стали трубками по типу теплообменника. Внутри каждой стальной трубы помещена стеклянная трубка с небольшой (2...3 мм) кольцевой воздушной прослойкой, являющейся разрядным пространством. Внутренняя поверхность стеклянных трубок покрыта графитомедным (или алюминиевым) покрытием. Стальные трубы являются одним из электродов, а покрытия на внутренних стенках стеклянных трубок — другим. К стальным трубам подводят электрический переменный ток напряжением 8 ... 10 кВ, а покрытия на стеклянных трубках заземляют. При прохождении электрического тока через разрядное пространство происходит разряд коронного типа, в результате которого образуется озон. Предварительно осушенный и очищенный воздух проходит через кольцевое пространство и таким образом озонируется, т. е. образуется озоновоздушная смесь. Стеклянные трубки являются диэлектрическим барьером, благодаря чему разряд получается «тихим», т. е. рассеянным без образования искр. При этом до 90% электроэнергии превращается в теплоту, которую отводит от озонатора циркулирующая в межтрубном пространстве аппарата охлаждающая вода. Подача в озонаторы кислорода увеличивает выход озона в 2...2,5 раза по сравнению с подачей воздуха, но требует строительства установок для получения кислорода. Воздух, используемый в озонаторах, должен быть предварительно освобожден от влаги и пыли. Даже следы влаги, попадая в разрядное пространство аппарата, вызывают появление искрового разряда, который значительно снижает показатели работы озонатора — уменьшается выход озона и примерно в 4 раза возрастает расход электроэнергии (по сравнению с подачей сухого воздуха). Кроме того, присутствие следов влаги делает озон весьма агрессивным к деталям озонатора, трубам и арматуре. Для извлечения пыли воздух пропускают через матерчатые фильтры специальных конструкций, а для удаления влаги устанавливают адсорберы, загружаемые при сушке воздуха выделяется теплота.