Смекни!
smekni.com

Медные сплавы (стр. 2 из 2)

Хромовые бронзы

Хромовые бронзы отличаются высокими механическими свойствами, высокой электропроводностью и теплопроводностью и повышенной температурой рекристаллизации. Эти сплавы широко применяются для электродов электросварочных аппаратов и изготовления коллекторов электромоторов, как более качественные сплавы, чем кадмиевая бронза и коллекторная медь, применяемые для этих целей.


в) Медно-никелевые сплавы

Сплавы на основе меди, содержащие никель в качестве главного легирующего элемента. Никель образует с медью непрерывный ряд твёрдых растворов. При добавленииникеля к медивозрастают её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, сильно повышается стойкость против коррозии. Медно-никелевые сплавы хорошо обрабатываются давлением в горячем и холодном состоянии.

Мельхиор

Мельхиор - однофазный сплав, представляющий собой твёрдый раствор; хорошо обрабатывается давлением в горячем и холодном состоянии, после отжига имеет предел прочности около 400 Мн/м2 (40 кгс/мм2). Наиболее ценное свойство Мельхиора — высокая стойкость против коррозии в воздушной атмосфере, пресной и морской воде. Увеличенное содержание никеля, а также добавки железа и марганца обеспечивают повышенную коррозионную и кавитационную стойкость, особенно в морской воде и в атмосфере водяного пара.

Нейзильбер

Нейзильбер - сплав меди с 5—35% Ni и 13—45% Zn. При повышенном содержании никеля имеет красивый белый цвет с зеленоватым или синеватым отливом и высокую стойкость против коррозии. Дорогие изделия из сплавов типа Нейзильбер под названием "пакфонг" завезены в Европу из Китая в 18 в. В 19 в. изделия из сплавов такого типа, обычно посеребрённые, производили под разными наименованиями: китайское серебро, мельхиор и др.


2. Свойства основы сплава – медь

Физические свойства меди

Цвет Меди красный, в изломе розовый, при просвечивании в тонких слоях зеленовато-голубой. Металл имеет гранецентрированную кубическую решетку с параметром а = 3,6074 Å; плотность 8,96 г/см3(20 °С). Атомный радиус 1,28 Å; ионные радиусы Cu+0,98 Å; Сu2+ 0,80 Å; tпл1083 °С; tкип2600 °С; удельная теплоемкость (при 20 °С) 385,48 дж/(кг·К), т.е. 0,092 кал/(г·°С). Наиболее важные и широко используемые свойства Меди: высокая теплопроводность - при 20 °С 394,279 вт/(м·К.), то есть 0,941 кал/(см·сек·°С); малое электрическое сопротивление - при 20 °С 1,68·10-8ом·м. Термический коэффициент линейного расширения 17,0·10-6. Давление паров над Медью ничтожно, давление 133,322 н/м2(т.е. 1 мм рт.ст.) достигается лишь при 1628 °С. Медь диамагнитна; атомная магнитная восприимчивость 5,27·10-6. Твердость Меди по Бринеллю 350 Мн/м2(т. е. 35 кгс/мм2); предел прочности при растяжении 220 Мн/м2(т. е. 22 кгс/мм2); относительное удлинение 60%, модуль упругости 132·103Мн/м2(т.е. 13,2·103кгс/мм2). Путем наклепа предел прочности может быть повышен до 400-450 Мн/м2, при этом удлинение уменьшается до 2% , а электропроводность уменьшается на 1-3% . Отжиг наклепанной Меди следует проводить при 600-700 °С. Небольшие примеси Bi (тысячные доли%) и Рb (сотые доли%) делают Медь красноломкой, а примесь S вызывает хрупкость на холоде.

Химические свойства меди

По химическим свойствам Медь занимает промежуточное положение между элементами первой триады VIII группы и щелочными элементами I группы системы Менделеева. Медь, как и Fe, Co, Ni, склонна к комплексообразованию, дает окрашенные соединения, нерастворимые сульфиды и т. д. Сходство с щелочными металлами незначительно. Так, Медь образует ряд одновалентных соединений, однако для нее более характерно 2-валентное состояние. Соли одновалентной Медь в воде практически нерастворимы и легко окисляются до соединений 2-валентной Меди; соли 2-валентной Меди, напротив, хорошо растворимы в воде и в разбавленных растворах полностью диссоциированы. Гидратированные ионы Cu2+окрашены в голубой цвет. Известны также соединения, в которых Медь 3-валентна. Так, действием пероксида натрия на раствор куприта натрия Na2CuO2получен оксид Сu2О3- красный порошок, начинающий отдавать кислород уже при 100 °С. Сu2О3- сильный окислитель (например, выделяет хлор из соляной кислоты).

Химическая активность Меди невелика. Компактный металл при температурах ниже 185 °С с сухим воздухом и кислородом не взаимодействует. В присутствии влаги и СО2на поверхности Меди образуется зеленая пленка основного карбоната. При нагревании Меди на воздухе идет поверхностное окисление; ниже 375 °С образуется СuО, а в интервале 375-1100 °С при неполном окислении Медь - двухслойная окалина, в поверхностном слое которой находится СuО, а во внутреннем - Сu2О.

Влажный хлор взаимодействует с Медью уже при обычной температуре, образуя хлорид СuCl2, хорошо растворимый в воде. Медь легко соединяется и с других галогенами. Особое сродство проявляет Медь к сере и селену; так, она горит в парах серы. С водородом, азотом и углеродом Медь не реагирует даже при высоких температурах. Растворимость водорода в твердой Медь незначительна и при 400 °С составляет 0,06 мг в 100 г Меди. Водород и других горючие газы (СО, СН4), действуя при высокой температуре на слитки Меди, содержащие Сu2О, восстановляют ее до металла с образованием СО2и водяного пара. Эти продукты, будучи нерастворимыми в Меди, выделяются из нее, вызывая появление трещин, что резко ухудшает механические свойства Меди.


3. Диаграммы состояния медных сплавов

Сu-Zn

Медь с цинком образует кроме a -твердого раствора на основе меди ряд промежуточных фаз b, g и т. д.

Фаза b — это твердый раствор на основе электронного соединения CuZn (фаза Юм—Розери) с решеткой ОЦК. При охлаждении при температуре около 450 °С b -фаза переходит в упорядоченное состояние (b ® b ў), причем b ў -фаза в отличие от b -фазы является более твердой и хрупкой.

Фаза g — твердый раствор на основе электронного соединения Cu5Zn8 отличается очень высокой хрупкостью и ее присутствие в промышленных конструкционных сплавах исключается.

Cu - Sn

Диаграмма, показывающая фазовый состав и структуру Cu - Sn-сплавов (оловянистых бронз). Представляет собой комбинацию нескольких перитектических диаграмм. Возможно образование следующих фаз: α - твердый раствор Sn в Cu; Sn - почти чистое олово (растворимость Cu в Sn меньше 0,01 %); β - твердый раствор электронного типа на базе соединения Cu5Sn, а пунктирная линия показывает процесс его упорядочения; δ - электронное соединение Cu31Sn8; γ- твердый раствор на базе химического соединения Cu и Sn; ε - электронное соединение Cu3Sn; η - химическое соединение Cu6Sn5

a)

Cu-Ni

Диаграммасостояния Сu—Ni характеризуется образованием в процессе кристаллизации непрерывного ряда твердых растворов (Сu, Ni) с гранецентрированной кубической структурой. Установлено равновесие Ж ↔ Газ с азеотропным минимумом при температуре 2500 °С и концентрации 50—60%(ат.)Ni; указывается на наличие области расслоения на две фазы (газообразный и жидкий растворы разного состава) при концентрации 60—100 % (ат.) Ni. В интервале концентраций 0-60%(ат.) Ni область расслоения настолько узка, что практически вырождается в прямую линию.

медный сплав бронза цинк латунь

Заключительная часть

Чистая медь широко используется в электротехнике, в различного рода теплообменниках. Из высокотехничных латуней получают изделия глубокой вытяжки (радиаторные и конденсаторные трубки, сильфоны, гибкие шланги). Латуни, содержащие свинец, используют при работе в условиях трения (в часовом производстве, в типографических машинах).

Оловянные бронзы применяют для литья художественных изделий. При дополнительном легировании фосфором их используют для изготовления деталей, работающих на трение в коррозионной среде.

Алюминиевые бронзы, прежде всего, используют в качестве заменителей оловянных. Высокопрочные алюминиевые бронзы идут на изготовление шестеренок, пружин, втулок.

Из бериллиевой бронзы делают детали точного приборостроения, упругие элементы электронных приборов, мембраны.

Для менее ответственных деталей используют кремнистые бронзы.

Медно-никелевые сплавы нашли широкое применение как коррозионностойкие и электротехнические материалы.

Из мельхиоров изготавливают конденсаторные трубы, трубные доски конденсаторов, медицинский инструмент и т.д.

Нейзильберы используются как плакировочный материал для медицинских инструментов, из них также изготавливают детали точной механики и часовой конструкции.


Список литературы

1) Фетисов Г.П. Материаловедение и технология металлов.- М.: Высшая школа, 2006.-862 с.

2) www.housetop.ru

3) www.svarka-lib.com

4) www.mcomplex.ru