Смекни!
smekni.com

Разработка композита на основе более дешевых компонентов и технологической схемы его производства (стр. 8 из 9)

Где E

=18 кДж/моль – энергия активации вязкого течения, при скоростях сдвига
[2].

R=8,314 кДж/моль·К – универсальная газовая постоянная;

Ti=150єС – температура переработки;

Используя показатель текучести расплава

= 3,0 г/10 мин, по номограмме 4, находим:

=2,5·104 Па – напряжение сдвига [2];

=2,1·104 Па – напряжение сдвига [2];

=1,2 ·101-1 – скорость сдвига [2];

Тэ=

=175,59єС

5.5.1 Расчет скорости движения композиционных материалов

Для расчета скорости отвода стренгов используем уравнения теплопередачи в нестационарных условиях.

Расчет параметров охлаждения производим графоаналитическим методом, т.е. зная значение безмерной температуры:

Q =

(2.1)

где Тn=72,5єС=345,5К – средняя температура полимера [1.];

Ткр=130єС=403К – температура кристаллизации полимера [2.];

Тв=30єС=303К – температура воздуха [2].

Q =

єС

Найдем критерий Грасгоффа, определяемый по формуле (2.2): [2]

Gr =

, (2.2)

где

,0033 – температурный коэффициент объемного расширения воздуха;

0 = 250 мм = 2,5 м – длина стренга;

g =9,8 м/с2 – ускорение свободного падения;

Тw = 116,25єС = 389,25К – средняя температура полимера;

= коэффициент кинематической вязкости воздуха при температуре 30єС [2].

Gr =

142 ·10-13

При свободной конвекции воздушной среды критерий Нуссельта, при ламинарном режиме, составляет:

Nu = 0,695· Gr0,33 (2.3)

Nu = 0,695 · (142 ·10-13)0,33 = 6,95 ·10-3

Коэффициент теплоотдачи равен:

, (2.4)

где

= 2,67 · 102 Вт/м·К – коэффициент теплопроводности воздуха при температуре Т=30єС [4.c. 402];

= 92,7825 Вт/м2 · К

Численное значение Био [4]:

, (2.5)

где

= 3 мм – толщина жгута;

Вт/м·К – теплопроводность полимера при температуре Т= 101,25єС [3]

= 1295,7

Используя значение критерия Био, находим по номограмме критерий Фурье: [3]

F0=0,04

Определив критерий Грасгофа, Нуссельта, Био и Фурье, рассчитываем скорость отвода полимера. Коэффициент теплоотдачи при условии вынужденного движения жгута относительно воздуха, находим по критерию Рейнольдса:

Re=

, (2.6)

где

=0,002 м/с – скорость движения от линии кристаллизации до направляющих пластин [2].

Re=

= 2,5 · 10-2,

А затем рассчитываем коэффициент теплоотдачи:

, (2.7)

= 1,41

Для последующих расчетов берется наибольшее значение коэффициента теплоотдачи из двух найденных

или
.

Скорость отвода материала из условий охлаждения будет равна:

, (2.8)

где

=900 кг/м3 – плотность полимера при температуре Т=20єС [2];

= 1,92 кДж/(кг·К)=1,92·103Дж/(кг·К) – теплоемкость полимера [2];

= 2·10-3 м/с

5.5.2 Расчет перепада давлений в формующей головке

Для нахождения потерь весь путь движения расплава в головке разбивают условно на участки с постоянной геометрической формой каналов и нумеруют их. Общий перепад давления находят как сумму перепадов на полученных участках. Так, головку кольцевой формы канала можно разбить на три участка.

1. Форма канала кольцевая

г1= (3n+1)*V (3.1)

n*р*R3*c

где n=0,4 – показатель степени;

V=9 см3/с – объемный расход;

R=0,3 см-радиус канала;

с =12 – число параллельных каналов на расчетном участке.

(3*0,4+1)*9

г1= 0,4*3,14*0,33*12 =126 с-1.

По номограмме [1] определяем напряжение сдвига:

=7,9·104 Па

Находим перепад на первом участке: [2]

ДС=2-

(ℓ+mR)/ R, Па (3.2)

ℓ=17,2 см длина канала;

m=0 входовый поправочный коэффициент;

ДС =2*7,9*104(17,2+0*0,3) =359*104= 3,95 МПа;

0,3

2. Форма канала кольцевая, находим скорость сдвига по формуле 3.1:


(3*0,4+1)*9

г2= 0,4*3,14*0,43*12 =73,3 с-1.

R=0,4 см-радиус канала;

с =12 – число параллельных каналов на расчетном участке

По номограмме [1] определяем напряжение сдвига:

=6,2·104 Па

Находим перепад на втором участке [2]:

ℓ=4 см – длина канала

Находим перепад давления на втором участке, по формуле 3.2:

ДС2= 2*6,2*104(4+0*0,4) =83*104= 0,83МПа;

0,4

3. Форма канала кольцевая, находим скорость сдвига по формуле 3.1:

г2= (3*0,4+1)*9

0,4*3,14*0,53*12 =2,8 с-1.

R=0,5 см-радиус канала;

с =12 – число параллельных каналов на расчетном участке

По номограмме [1] определяем напряжение сдвига:

=4,1·104 Па

Находим перепад на третьем участке [2]:

ℓ=3 см – длина канала

Находим перепад давления на втором участке, по формуле 3.2:

ДС2= 2*4,1*104(3+0*0,5) =31*104= 0,31 МПа;

0,5

Суммарный перепад давлений на всех участках для головки должен быть равен: [2]

5 МПа≤УДрi≥15 МПа;

Дробщ= УДр=3,95+0,83+0,31=5,09 Мпа.

Как видно, суммарный перепад давлений попадает в экспериментальную область 5 МПа≤5,09 Мпа≥15 МПа, которая обеспечивает оптимальную взаимосвязь между производительностью аппарата и степенью гомогенизации расплава.

Технико–экономические показатели

Наименование показатели Единица измерени я Данные проекта Данные завода Дпр Ч100%Дан
аналога Проекта
1. Годовой объём производства тонн 3000 3500 116
2. Годовой объём производства Тыс. руб. 36000 42000 116
3. Производственные затраты Тыс. руб. 6360,172 6576,678 103
5. Оборотные средства Тыс. руб. 172485,252 1813473,77 105
6. Капитальные затраты Тыс. руб. 196548,529 205411,05 104
7. Численность рабочих: работающих рабочих чел. чел 4536 4536 100100
8. Производительность труда, работающих– рабочих т/чел.т/чел. 135108 157,5126 116116
9. Цена 1 т прод. Тыс. руб. 43 37 116
10. Себестоимость продукции Тыс. Руб./тонн 40,8 32,46 78
11. валовая прибыль Тыс руб. 25859 40711 157

Заключение