Смекни!
smekni.com

Организация производства на Магнитогорском металлургическом комбинате в электросталеплавильном цехе (стр. 4 из 10)

За время окислительного периода окисляется не менее 0,2...0,3 % углерода при выплавке высокоуглеродистой стали (содержащей более 0,6 % С) и 0,3...0,4 % при выплавке средне- и низкоуглеродистой стали. Одновременно окисляется марганец: всего за время плавления и окислительного периода окисляется 65...85 % от содержания марганца в шихте. Дефосфорация металла протекает по реакции:

2 [Р] + 5 (FeО) = 3 (СаО) = (ЗСаО·Р205) + 5 |Fе] + 767 290 Дж7моль.


Успешному протеканию этой реакции способствуют высокая окисленность и основность шлака, а также пониженная температура. Такие условия создаются при совместном использовании присадок твердого окислителя и извести. Полнота дефосфорации повышается в результате перемешивания металла и шлака при кипении и вследствие непрерывного обновления шлака.

Ускорение дефосфорации, повышение степени ее полноты и сокращение длительности окислительного периода достигаются при вдувании в ванну дефосфорирующих порошкообразных смесей в струе кислорода. Так, вдувание смеси молотых извести, железной руды и плавикового шпата в соотношении 7 : 2 : 1 в течение 5...8 мин. с расходом смеси 20...25 кг/т стали обеспечивает получение в металле фосфора в 1,5...2 раза меньше, чем при обычной технологии, и сокращение окислительного периода примерно на 50 %.

В окислительный период десульфурация получает ограниченное развитие из-за высокого содержания оксидов железа в шлаке. Коэффициент распределения серы между шлаком и металлом (S)/[S] менее 5. Всего за время плавления и окислительный период в шлак переходит 30...40 % серы, содержащейся в шихте.

Кипение металла (выделение пузырей СО) способствует удалению из него водорода и азота. Это важно еще и потому, что при высоких температурах в зоне действия электрических дуг наблюдается повышенная растворимость газов из-за диссоциации их молекул. Перемешивание металла пузырями газов ускоряет нагрев металла и выравнивание его температуры по объему ванны.

В конце окислительного периода шлак обычно содержит, %: 35...50 СаО; 10...20 SiO2; 6...15 МgO; 6...30 FеО; 2...6 Fе203; 4...12 МnО; 3...7 А1203; 0,4...1,5 Р2О5. При этом содержание оксидов железа в шлаке зависит, главным образом, от концентрации углерода в металле: чем меньше содержится углерода, тем больше оксидов железа, и наоборот.

Окислительный период заканчивают сливом окислительного шлака полностью путем наклона печи (остатки шлака часто удаляют вручную с помощью деревянных гребков). Полное удаление шлака предотвращает восстановление из него фосфора в следующем периоде. Продолжительность окислительного периода составляет 30.. .90 мин.

Восстановительный период. В восстановительный период решаются следующие задачи: а) раскисление металла; б) удаление серы; в) доведение химического состава стали до заданного; г) корректировка температуры. Все эти задачи решаются параллельно.

Восстановительный период начинается с присадки в печь ферромарганца в количестве, необходимом для обеспечения содержания марганца в металле на нижнем уровне для выплавляемой стали. Затем дают ферросилиций из расчета введения в металл 0,10...0,15 % и алюминий в количестве 0,03...0,1 %. Эти присадки обеспечивают раскисление металла, получившее название осаждающее, так как раскислители вводятся непосредственно в жидкий металл.

Далее наводят шлак присадками извести, плавикового шпата и шамотного боя в соотношении 5 : 1 : 1 в количестве 2...4 % от массы металла. Через 10... 15 мин. на поверхности металла образуется жидкоподвижный шлак и начинается диффузионное раскисление металла. Для этого в течение 15...20 мин. в печь периодически вводят порции смеси из извести, плавикового шпата и молотого кокса в соотношении 8:2: 1 ; иногда присаживают один кокс. Далее в смесь вводят молотый 45 или 75 %-ный ферросилиций. Смесь состоит из извести, плавикового шпата, кокса и ферросилиция в соотношении 4:1:1:1; содержание кокса в этой смеси далее уменьшают. Порции раскислительной смеси, содержащей ферросилиций, дают с интервалом 10... 12 мин. Иногда вводят порцию чистого ферросилиция. На некоторых марках стали в конце восстановительного периода в состав раскислительной смеси вводят более сильные раскислители: молотый силикокальций и порошкообразный алюминий, а при выплавке ряда низкоуглеродистых сталей диффузионное раскисление ведут без кокса в составе раскислительных смесей.

Суть диффузионного раскисления, протекающего в восстановительный период, заключается в следующем. Так как раскислители применяют в порошкообразном виде, то плотность их невелика и они медленно опускаются через слой шлака. В шлаке протекают реакции раскисления:

(FеО) + С = Fе + СО; 2 (FеО) + Si = (SiO2) + 2 Fе и т.п.

В результате содержание FеО в шлаке уменьшается и в соответствии с законом распределения (FеО)/[FеО] = const кислород (в виде FеО) путем диффузии переходит из металла в шлак (диффузионное раскисление). По мере уменьшения содержания FеО в шлаке пробы застывшего шлака светлеют, а затем становятся почти белыми. Белый цвет шлака свидетельствует о низком содержании FеО в нем и высоком содержании СаО (оксид FеО имеет черный цвет). Преимущество диффузионного раскисления заключается в том, что продукты реакции остаются в шлаке и не загрязняют металл в качестве неметаллических включений.

Во время восстановительного периода успешно протекает десульфурация металла. Этому способствуют высокая основность шлака (СаО/SiO2 = 2,7...3,3) и низкое содержание FеО в шлаке (менее 0,5 %). Коэффициент распределения серы между шлаком и металлом (S)/[S] в восстановительный период составляет 20.. .50 и может доходить до 60.

Белый шлак конца восстановительного периода электроплавки имеет следующий состав, %: 53...60 СаО; 15...25 SiO2; 7... 15 Мg0; менее 0,5 FеО; менее 0,5 МnО; 5...8 Al203; 5...10 СаF2; 0,8...1,5 СаS.

Для улучшения перемешивания металла и шлака и интенсификации медленно идущих диффузионных процессов в восстановительный период применяют электромагнитное перемешивание, особенно на большегрузных печах.

Длительность восстановительного периода составляет 40... 100 мин. За 10..20 мин. до выпуска проводят при необходимости корректировку содержания кремния в металле, вводя в печь кусковый ферросилиций. Для окончательного раскисления за 2...3 мин. до выпуска в металл присаживают 0,4... 1,0 кг алюминия на тонну стали (чем ниже содержание углерода в металле, тем больше расход алюминия).

Иногда восстановительный период проводят не под белым, а под карбидным шлаком. Такой шлак отличается более высокой основностью и наличием в шлаке карбида кальция (СаС2). Для получения карбидного шлака наведенный в начале восстановительного периода шлак раскисляют повышенным количеством кокса (2...3 кг/т), после чего печь герметизируют. В этих условиях в зоне электрических дуг идет реакция

СаО + 3 С = СаС2 + СО.

Образующийся карбид кальция является энергичным раскислителем и наличие его в шлаке обеспечивает более полное, чем под белым шлаком, раскисление и десульфурацию. Под карбидным шлаком, содержащим 1,5.. .2,5 % СаС2, металл выдерживают 30...40 мин.

Карбид кальция хорошо смачивает металл, поэтому при выпуске плавки в ковш под карбидным шлаком металл загрязняется частичками шлака. Для предотвращения этого карбидный шлак за 20...39 мин. до выпуска переводят в белый. Для этого в печь открывают доступ воздуху через рабочее окно. Кислород воздуха окисляет карбид кальция с образованием СаО и СО и карбидный шлак превращается в белый.

Выпуск сталииз печи в ковш производят совместно со шлаком. Интенсивное перемешивание металла со шлаком в ковше обеспечивает дополнительное рафинирование: из металла в шлак переходят сера и неметаллические включения.

При выплавке стали в дуговых печах порядок легирования зависит от сродства легирующих элементов к кислороду.

Никель и молибден во время плавки не окисляются и их вводят в начальные периоды плавки: никель в завалку, а молибден в конце плавления или в начале восстановительного периода.

Хром и марганец вводят в металл после слива окислительного шлака в начале восстановительного периода.

Вольфрам, также как хром и марганец, обладает большим сродством к кислороду, чем железо. Его вводят в металл в начале восстановительного периода. Особенность легирования вольфрамом заключается в том, что из-за высокой температуры плавления ферровольфрама он растворяется медленно и для корректировки состава металла ферровольфрам можно присаживать в ванну не позднее, чем за 30 мин до выпуска.

Кремний, ванадий и особенно титан и алюминий обладают большим сродством к кислороду и легко окисляются. В связи с этим легирование стали феррованадием производят за 15...35 мин до выпуска, ферросилицием - за 10...20 мин до выпуска. Ферротитан вводят в печь за 5...15 мин до выпуска либо в ковш. Алюминий вводят за 2...3 мин до выпуска в печь.

2. Выплавка стали в двухванном сталеплавильном агрегате

2.1 Шихтовые материалы

Качество шихтовых материалов должно полностью соответствовать требованиям стандартов. Для двухванных агрегатов применяют следующие материалы:

- чугун передельный жидкий для мартеновских печей по СТП-101-27-87;

-чугун передельный по ГОСТ 805-95;

-металлы черные вторичные по ГОСТ 2787-75;

-известняк (в шихту и для подсыпки порогов) по СТО ММК 223-99;

- известь для сталеплавильного производства обычная по СТО ММК 223-99;

- доломит обожженный металлургический для заправки сталеплавильных печей но СТП-101-5 7-89;

- порошки магнезитовые (периклазовые) спеченные по ТУ 14-8-209-76;

- руда железная Магнитогорского рудника, концентраты железорудные обогатительной фабрики, агломерат по СТО ММК 101 -31 -99.

Все сыпучие материалы, поступающие на шихтовый двор мартеновского цеха, должны иметь сертификаты. Сыпучие материалы производства ММК разрешается принимать без сертификатов. В днищах мульд обязательно должны быть отверстия для удаления влаги. Запрещается применение боксита и окалины.