bcт – ширина стержня
b0=(1,1÷1,5)∙82=90,2÷123 (см)
Принимаю b0=112 (мм).
3.2. Высота окна магнитопровода:
h0=Sок /b0=26062/112=233 (мм)
3.3. Длина пластин (1го,2го и 3го вида):
l1=h0+bст=233+82=315 (мм)
l2=2b0+bст=2∙112+82=306 (мм)
l3=b0+bст=112+82=194 (мм)
Количество листов каждого типа:
n1=lст∙0,95∙3/0,5=86∙0,95∙3/0,5=490 (шт),
n2= lст∙0,95∙/0,5=163 (шт),
n3= lст∙0,95∙2/0,5=327 (шт)
lст – толщина набора магнитопровода
0,95 – коэффициент заполнения стали (Кс)
3.4. Масса стали магнитопровода:
Gc=[(h0+2bст)∙(2b0+3bст)-2h0∙b0]∙lст∙0,95∙γ∙10-3
γ-плотность электротехнической стали 3413, γ=7,65 (г/см3)
Gc=[(23,3+2∙8,2)∙(2∙11,2+3∙8,2)-2∙23,3∙11,2]∙8,6∙0,95∙7,65∙10-3=84 (кг)
3.5. Потери в стали магнитопровода:
Pc=К0∙Gc∙p0∙Кур
К0 – коэффициент, учитывающий добавочные потери в стали за счёт изменения структуры листов при их механической обработке, К0=1,2.
Кур – коэффициент увеличения потерь для анизотропных сталей, являющейся функцией геометрических размеров магнитопровода.
В зависимости от величины 3h0+4b0 /bст=3∙23,3+4∙11,2/8,2=14 -получаем Кур=1,15.
p0 –удельные потери в 1 кг стали марки 3413 при индукции В=1,64 (Тл) равняются p0=2,3 (Вт/кг)
Pc=1,2∙84∙2,3∙1,15=267 (Вт)
3.6. Абсолютное значение тока холостого хода:
Iоа – активная составляющая тока холостого хода, обусловленная потерями холостого хода Pc
Iор – реактивная составляющая тока холостого хода, необходимая для создания магнитного потока
Iоа=Pc/3Uc
Pc – потери в стали магнитопровода
Uc – номинальное напряжение питающей сети
Iоа=267/3∙380=0,2 (А)
Iор=[Hc∙lм+0,8∙В∙nз∙δз∙104/√2∙W1∙Кr]∙Кухх
Hc – напряжённость магнитного поля, соответствующая индукции В=1,64 (Тл). Для анизотропной стали 3413 Hc=8,2 (А/см);
lм – средняя длина магнитной силовой линии (см);
В – магнитная индукция (Тл);
nз – число немагнитных зазоров на пути магнитного потока ;
δз – условная длина воздушного зазора в стыке равная 0,005 (см) в случае штампованных листов при сборке магнитопровода внахлёстку;
Кr – коэффициент высших гармонических. Ориентировочно для стали 3413 при индукции В=1,64 (Тл) Кr=1,1;
Кухх – коэффициент увеличения тока холостого хода. Этот коэффициент является функцией геометрических размеров магнитопровода и магнитной индукции.
При соотношении (h0+2b0 )/bст +1=((23,3+2∙11,2)/8,2)+1=6,57 - получаем Кухх=2,5.
Поскольку трёхстержневой магнитопровод является несимметричным, т.е. имеет разные пути для магнитного потока крайних и средней фазы, то необходимо посчитать средние длины магнитной силовой линии отдельно для крайней и средней фазы.
Длина средней линии магнитного потока для крайней фазы:
lм к.ф.=h0+2b0+bст+π∙ bст /2=23,3+2∙11,2+8,2+3,14∙8,2/2=66,8 (см)
Длина средней линии магнитного потока для средней фазы:
lм ср.ф.=h0+bст=23,3+8,2=31,5 (см)
Число немагнитных зазоров на пути потока для крайней фазы nз=3, для средней фазы nз=1.
Реактивная составляющая тока холостого хода для крайней фазы:
Iор к.ф.=[(Hc∙ lм к.ф.+,8∙В∙3∙0,005∙104)/√2∙W1∙Кr]∙Кухх
Iор к.ф.=[(8,2∙66,8+0,8∙1,64∙3∙0,005∙104)/√2∙156∙1,1]∙2,5=7,7 (А)
Реактивная составляющая тока холостого хода для средней фазы:
Iор ср.ф.=[(Hc∙ lм ср.ф.+0,8∙В∙1∙0,005∙104)/√2∙W1∙Кr]∙Кухх
Iор ср.ф.=[(8,2∙31,5+0,8∙1,64∙1∙0,005∙104)√2∙156∙1,1]∙2,5=3,3 (А)
Среднее значение реактивной составляющей тока холостого хода:
Iор=(2∙Iор к.ф. + Iор ср.ф. ) /3=(2∙7,7+3,3)/3=6,2 (А)
Абсолютное значение тока холостого хода:
= =6,2 (А)Ток холостого хода в процентах от номинального первичного тока:
i=(I0 /I1ф)∙100%=(6,2/38,7)∙100%=16%
4.1. Выбор обмоточных проводов:
По предварительно рассчитанным значениям сечений проводов выбираем ближайшие из стандартного ряда:
q1=21,12(мм2)
q2=69,14 (мм2)
Провод обмоточный алюминиевый нагревостойкий прямоугольного сечения:
Номинальный размер проволоки а*b, мм | Площадь поперечного сечения q, мм2 | Размеры провода с изоляцией аиз*bиз , мм | Масса 1000 м провода,кг |
2,12*10,0 | 21,12 | 2,6*10,4 | 62,58 |
5,00*14,0 | 69,14 | 5,52*14,48 | 201,32 |
Уточнённые значения плотности тока:
J1=I1ф расч. /q1=29,98/21,12=1,4 (А/мм2)
J2=I2ф расч. /q2=111,9/69,14=1,6 (А/мм2)
4.2. Высота цилиндрической обмотки:
hобм=h0 - 2∙∆я
∆я – зазор между торцевой поверхностью обмотки и ярмом магнитопровода, равный 5 (мм);
h0 – высота окна магнитопровод
hобм=233-2∙5=223 (мм)
4.3. Число витков в слое:
Первичной обмотки
Wc1=(hобм /bиз.1) – 1=(223/10,4)-1=20,4- принимаем Wc1=20
Вторичной обмотки
Wc2=(hобм /bиз.2) – 1=(223/14,48)-1=14,4– принимаем Wc2=14
4.4 Число слоёв:
Первичной обмотки
nc1=W1 /Wc1=156/2=7,8 - принимаем nc1=8
Вторичной обмотки
nc2=W2 /Wc2=28/14=2
4.5. Радиальные размеры (толщина) первичной и вторичной обмоток, выполненных из изолированного провода:
δ1=nc1∙nпар1∙аиз1+(nc1-1)∙∆вит
δ2=nc2∙nпар2∙аиз2+(nc2-1)∙∆вит
nпар1 ,nпар2 – число параллельных проводов первичной и вторичной обмоток;
аиз1 ,аиз2 – размер проводов по ширине с изоляцией;
nc1 , nc2 – число слоёв первичной и вторичной обмоток;
∆вит – межслоевая изоляция для изолированных проводов, ∆вит=0,15
δ1=8∙1∙2,6+(8-1)∙0,15=22 (мм)
δ2=2∙1∙5,52+(2-1)∙0,15=11 (мм)
4.6. Радиальный размер катушки трансформатора:
δ=δ1+δ2+δ12+∆т
∆т – технологические зазоры, связанные с отступлением сторон катушки от парралельности, с неплотностью намотки, ∆т=4 (мм);
δ12 – расстояние между первичной и вторичной обмотками, δ12=0,16 (мм)
δ=22+11+3∙0,16+4=37 (мм)
4.7. Внутренний размер катушки по ширине:
А=bст +∆ш
∆ш – двухсторонний зазор по ширине между катушкой и стержнем, ∆ш=12 (мм)
А=82+12=94 (мм)
4.8. Внутренний размер катушки по длине:
Б=lст +∆дл
lст – длина пакета магнитопровода
∆дл – двухсторонний зазор по длине между катушкой и стержнем,
∆дл=30 (мм)
Б=86+30=116 (мм)
4.9. Средние длины витков:
Средняя длина витка первичной обмотки
lср1=2(А-2R)+2(Б-2R)+2∙π∙(R+δ1 /2)
R-радиус скругления проводов при переходе с одной стороны на другую при намотке, R=10 (мм)
lср1=2(94-2∙10)+2(116-2∙10)+2∙3,14∙(10+22/2)=471 (мм)
Средняя длина витка вторичной обмотки
lср2=2(А-2R)+2(Б-2R)+2∙π∙(R+δ1+δ12+δ2 /2)
lср2=2(94-2∙10)+2(116-2∙10)+2∙3,14∙(10+22+0,16+11/2)=576 (мм)
После определения всех размеров выполним эскиз катушки:
Рисунок 2. « Катушка трансформатора с первичной и вторичной обмотками из изолированного провода»
4.10. Расстояние между катушками соседних стержней:
∆кат =bо-∆ш-2δ
∆кат =112-12-2∙37=25 (мм)
После уточнения всех размеров выполним эскиз трансформатора:
Рисунок 3. «Эскиз трансформатора»
4.11. Масса проводов катушки:
Масса провода первичной обмотки одной фазы трансформатора
G1=Ky∙g1∙W1∙lср1
g1 – масса одного метра провода первичной обмотки, g1=0,06 (кг);
lср1 – средняя длина витка первичной обмотки (м);
Ку – коэффициент, предусматривающий увеличение массы провода за счёт технологических погрешностей,Ку=1,05.
G1=1,05∙0,06∙156∙0,471=4,6 (кг)
Масса провода вторичной обмотки
G2=Кy ∙g2 ∙2W2 ∙lср2
g2 – масса одного метра провода вторичной обмотки, g2=0,2 (кг)
lср2 – средняя длина витка вторичной обмотки (м)
G2=1,05∙0,2∙2∙28∙0,576=6,8 (кг)
Общая масса провода трансформатора
Gпр=3(G1+G2)=3∙(4,6+6,8)=34,2 (кг)
4.12. Сопротивления обмоток трансформатора:
r1=KF ∙r0 (1)
r2=КF ∙r0 (2)
r0 (1) , r0 (2) – омическое сопротивление первичной и вторичной обмоток в холодном состоянии при 20 оС; КF – коэффициент Фильда, который учитывает добавочные потери в обмотках, КF=1,04
r0 (1)=ρ∙lср1 ∙W1 /q1
r0 (2)= ρ∙lср2 ∙W2 /q2
ρ- удельное электрическое сопротивление материала провода катушки, (для алюминиевого провода при 20 оС ρ=0,0282(Ом∙мм2 /м))