Министерство образование Российской Федерации
Санкт-Петербургский институт машиностроения (ЛМЗ-ВТУЗ)
Кафедра «Технология и оборудование сварочного производства»
Курсовая работа
по теме: Расчёт сварочного выпрямителя, предназначенного для однопостовой механизированной сварки плавящимся электродом в среде углекислого газа и под флюсом деталей из низкоуглеродистых и низколегированных сталей
Выполнил:
Ст.гр.№5303
Ковальков А. Е.
Проверила:
Приёмышева Г. А.
Санкт-Петербург 2010
Наименование параметра | Обозначение параметра | Величина |
1. Номинальное напряжение трёхфазной питающей сети частотой fс=50 Гц, В | Uс | 380 |
2. Номинальный выпрямленный (сварочный) ток, А | Idн | 500 |
3. Номинальное выпрямленное (рабочее)напряжение на зажимах выпрямителя при номинальном токе, В | Udн | 50 |
4. Номинальный режим работы (продолжительность нагрузки) при цикле сварки 10 мин, % | ПН% | 60 |
5. Способ регулирования сварочных параметров | тиристорный | |
6. Внешняя характеристика | жёсткая | |
7. Система охлаждения | Воздушнаяпринудительная | |
8. Класс изоляции | F | |
9.Кострукционные особенности:а) материал магнитопроводаб) материал обмоток трансформатора | Сталь 3413Алюминиевые провода |
Выбор осуществляется из четырёх самых распространённых схем выпрямления:
- Трёхфазная мостовая схема
- Шестифазная с нулевой точкой
- Схема с уравнительным реактором
- Кольцевая схема
Учитывая исходные данные, выбираем шестифазную схему выпрямления с уравнительным реактором, получившей широкое применение при сварке в углекислом газе. Схема обладает хорошим использованием вентилей и небольшой расчётной мощностью трансформатора.
Рисунок 1. «Схема выпрямления с уравнительным реактором»
В этой схеме трансформатор имеет одну первичную обмотку, соединённую в треугольник, и две группы вторичных обмоток, каждая из которых соединена в звезду, причём в первой группе нулевая точка образована концами обмоток, а во второй группе - началами обмоток. Таким образом, фазные напряжения смещены дуг относительно друга на 180 ̊. В результате имеем два трёхфазных выпрямителя, работающих параллельно через уравнительный реактор на общую нагрузку.
Основные параметры выпрямителя
1) Ориентировочное значение напряжения холостого хода выпрямителя:
Udxx=(1,4÷1,8)∙Udн=(1,4÷1,8)∙50=70÷90(В)
Udн – номинальное выпрямленное напряжение
Принимаем Udxx=80(В)
2) Длительно допустимый по нагреву ток выпрямителя:
Id дл=Idн∙
=500∙ =387 (А)Idн – номинальный выпрямленный ток
ПН - продолжительность нагрузки
По выбранной схеме выпрямления и схеме соединения первичной обмотки в треугольник рассчитываем:
1.1. Вторичное фазное напряжение:
U2ф =
= =68,4 (В)1.2. Реальное значение напряжения холостого хода выпрямителя:
Udxx0=1,35∙ U2ф =1,35∙68,4=92,3 (В)
1.3. Действующее значение тока вторичных обмоток трансформатора:
I2ф= Idн∙0,289=500∙0,289=144,5 (А)
выпрямитель катушка трансформатор сварочный
1.4. Расчётное значение тока вторичных обмоток:
I2ф расч.=I2ф∙
=144,5∙ =111,9 (А)1.5. Коэффициент трансформации:
При соединении первичной обмотки в треугольник
Кт=
= =5,561.6. Действующее значение фазного тока первичной обмотки:
I1ф=0,41∙
∙Idн=0,41∙ ∙500=36,87 (А)I1ф=36,87∙1,05=38,7 (А)
1,05-коэффициент, учитывающий влияние тока холостого хода на номинальный первичный ток
1.7. Расчётное значение тока первичных обмоток:
I1ф расч.=I1ф∙
=38,7∙ =29,98 (А)1.8. Значение номинальной отдаваемой (выпрямленной) мощности выпрямителя:
Pdн=Idн∙ Udн=500∙50=25000 (Вт)=25 (кВт)
1.9. Значение потребляемой мощности:
При соединении первичной обмотки в треугольник
Pсети=Uc∙I1ф∙3∙10-3=380∙38,7∙3∙10-3=44,1 (кВА)
2.1. Значение ЭДС, приходящейся на один виток:
e0=(0,08÷0,045)∙Pсети расч.
Pсети расч.=Pсети∙
=44,1∙ =34,2 (кВА)e0=(0,08÷0,045)∙34,2=2,736÷1,539
Принимаю e0=2,7 (В/виток)
2.2. Предварительное число витков вторичной обмотки:
W2’=
= =252.3. Предварительное число витков первичной обмотки:
W1’=
U1ф=Uc – при соединении первичной обмотки в треугольник
W1’=
=1412.4. Окончательное число витков первичной и вторичной обмоток:
Принимаем окончательное число витков вторичной обмотки W2=28.
Тогда окончательное значение ЭДС на один виток:
e0=
= =2,44 (В/виток)Окончательное число витков первичной обмотки:
W1=
= =155,6Принимаем W1=156.
2.5. Предварительная плотность тока в обмотках трансформатора:
J1’=1,5 (А/мм2) - в первичной
J2’=2,35 (А/мм2) - во вторичной
2.6. Предварительные сечения проводов обмотки:
q1’=
= =20 (мм2)q2’=
= =49 (мм2)2.7. Активное сечение стали магнитопровода:
Предварительное активное сечение:
Sa’=e0∙104/4,44∙f0∙В’
f0 – частота питающей сети;
В’ – предварительное значение магнитной индукции;
Для холоднокатаной анизотропной стали марки 3413 В’
1,65 (Тл)Sa’=2,44∙104/4,44∙50∙1,65=66,6 (см2)
2.8. Полное сечение магнитопровода:
Предварительное полное сечение:
Sст’=Sa’/Кс
Кс – коэффициент заполнения стали, Кс=0,95
Sст’=66,6/0,95=70,1 (см2)
2.9. Определение ширины пластины магнитопровода:
Учитывая мощность выпрямителя, выберем рекомендуемую ширину bст=82 (мм)
2.10. Предварительная толщина набора магнитопровода:
lст’=Scт’∙102/bст=70,1∙102/82=85,5 (мм)
Окончательную толщину набора принимаем lст=86 (мм)
Окончательное сечение магнитопровода:
Sст=lст∙bст /100=86∙82/100=70,5 (см2)
Окончательное активное сечение магнитопровода:
Sa=Sст∙Кс=70,5∙0,95=67 (см2)
Окончательная магнитная индукция:
В=e0∙104/4,44∙f∙Sa=2,44∙104/4,44∙50∙67=1,64 (Тл)
2.11. Суммарная площадь обмоток, которые необходимо разместить в окне:
Q=Q1+Q2
Q1 – площадь первичной обмотки
Q1=q1’∙W1=20∙156=3120 (мм2)
Q2 – площадь двух вторичных обмоток
Q2=2∙q2’∙W2=2∙49∙28=2744 (мм2)
Q=Q1+Q2=3120+2744=5864 (мм2)
2.13. Площадь окна магнитопровода:
Sок=2∙Q/Кзо
Кзо – коэффициент заполнения окна, Кзо=0,45
Sок=2∙5864/0,45=26062 (мм2)
3.1. Ширина окна:
b0=(1,1÷1,5)∙bст