ДИПЛОМНАЯ РАБОТА
ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДВИЖЕНИЯ СИСТЕМЫ
"ГАЗОВАЯ СТРУЯ - ЖИДКОСТЬ"
Содержание
Введение
1. Общая постановка задачи и ее математические модели
1.1 Обзор экспериментальных и теоретических работ по физико-математическому моделированию взаимодействия газовых струй с жидкостями
1.2 Общая постановка задачи и схема взаимодействия газовой струи с жидкостью
1.3 Модели турбулентных струйных течений газа
1.4 Уравнения Навье - Стокса установившегося изотермического осесимметричного движения вязкой несжимаемой жидкости
2. Газовая струя и межфазная поверхность
2.1 Течения газа в сопле Лаваля
2.2 Параметры струи на уровне свободной поверхности жидкости
2.3 Геометрические характеристики межфазной поверхности
2.4 2Оптимальная высота поднятия фурмы
2.5 Аппроксимация зависимости оптимальной высоты поднятия фурмы от давления
3. Численное исследование движения жидкости
3.1 Некоторые особенности уравнений Навье - Стокса и их решений
3.2 Уравнения Навье - Стокса в переменных функция тока, вихрь скорости
3.3 Приближенное решение уравнений Навье – Стокса
3.4 Анализ результатов исследования
Заключение
Литература
Необходимость решения задачи о взаимодействии газовых струй с жидкими преградами возникла в конце 50-х годов прошлого столетия, в связи с интенсивным внедрением в металлургическую практику кислородно-конвертерного способа производства стали.
Технологически кислородно-конвертерный процесс представляет собой продувку железоуглеродистого расплава (чугуна) технически чистым кислородом, в результате которой происходит выгорание углевода и других примесей (сера, марганец, кремний, фосфор). В настоящее время отсутствуют фундаментальные работы по физико-математическому моделированию кислородно-конвертерного процесса в целом, что объясняется чрезвычайной сложностью гидродинамических и тепломассообменных процессов, протекающих в конвертерах. Очевидно, что создание физико-математических моделей кислородно-конвертерного процесса является очень трудной, хотя и важной задачей. Это обусловлено тем, что модель должна включать в себя три фундаментальные проблемы физической термодинамики - турбулентность, многофазность и воздействие физико-химических переходов.
В этой связи возникла проблема создания упрощенных физико-математических моделей кислородно-конвертерного процесса, и в первую очередь его гидродинамики, как основной части управляющего звена.
Настоящая дипломная работа посвящена численному исследованию силового взаимодействия газовой струи и несжимаемой жидкости через контактную поверхность, образующуюся при проникании струи в жидкость. Целью исследования является изучение влияния управляющих параметров процесса, а именно давления и температуры в газопроводе, а также высоты поднятия фурмы над уровнем невозмущенной жидкости на движение газа и жидкости как составляющих частей системы. Кроме того, исследовалось влияние управляющих параметров на величину площади межфазной поверхности.
В представленной математической модели отсутствуют эмпирические постоянные, а лишь используются известные закономерности механики жидкостей и газа. Расчет течения газа в фурме проведен по известным газодинамическим формулам для трубы переменного сечения (сопло Лаваля) [1, 2], параметры газовой струи рассчитывались с использованием [3], межфазная поверхность определялась на основании модифицированной теории проникания М.А. Лаврентьева [4, 5], а циркуляция жидкости исследовалась с помощью уравнений Навье - Стокса [6].
Дается аналитический обзор основных работ по моделированию процессов, протекающих при взаимодействии газовых струй с жидкими преградами, показана общая схема силового взаимодействия и математические модели, описывающие его гидродинамику.
Основными работами, в которых обобщены и систематизированы экспериментальные данные по гидродинамическим и тепломассообменным процессам, протекающим при взаимодействии газовых струй с жидкими преградами, являются монографии В.И. Явойского [7] и В.И. Баптизманского [8].
Среди работ по исследованию гидродинамического взаимодействия газовых струй с жидкостями, обращает на себя внимание работа [9], в которой предложена модель взаимодействия струи с жидкостью, описываемая довольно простыми дифференциальными уравнениями. Однако эта модель требует знания большого количества экспериментальных данных, а замыкается основная система уравнений экспериментальной функцией уноса вещества, что затрудняет ее практическую реализацию. Кроме того, авторы не привели результаты, подтверждающие адекватность модели исследуемому процессу.
Определенный интерес представляет работа [10], в которой в рамках модели Рейнольдса для турбулентных течений жидкости получено поле скоростей в ванне конвертера. Оказалось, что при внедрении газовой струи в ограниченный объем жидкости в нем образуется тороидальный вихрь, причем вектор скорости на оси симметрии направлен вверх к свободной поверхности. К недостаткам модели следует отнести искусственность граничных условий и линейную зависимость скорости газовой фазы от координаты.
В работе [11] численно решена задача о движении жидкой стали в сталеразливочном ковше при ее продувке инертным газом. Слабым местом рассмотренной модели является отсутствие межфазной поверхности и пренебрежение влиянием сил тяжести.
Аналитически решена задача о силовом взаимодействии дозвуковой газовой струи с жидкостью в работе [12], в результате чего получена формула для площади контактной поверхности, расчеты по которой удовлетворительно совпадают с экспериментальными данными из [13]. Кроме того в работе получена формула, позволяющая находить предельно низкую высоту поднятия фурмы для достижения дозвуковой скорости струи на уровне поверхности спокойной жидкости.
Из резервуара, содержащего газ при давленииpн и температуре Tн,через фурму, снабженную соплом Лаваля, истекает в расчетном режиме вертикально вниз сверхзвуковая газовая струя, взаимодействуя с неподвижной жидкостью, заполняющей некоторый объем. Срез сопла фурмы отстоит от поверхности жидкости на расстоянии Hтаком, что скорость газа у поверхности становится дозвуковой.
В монографиях [7, 8] рассмотрены различные схемы взаимодействия газовых струй с жидкими средами. Отдадим предпочтение следующей комбинированной схеме. Струя газа, внедрившись в жидкость и достигнув максимальной глубины проникания, отражается и, изменяя направление движения на противоположное, увлекает за собой жидкость в пределах пограничного слоя, образующегося у поверхности раздела сред. На периферии наблюдаются нисходящие потоки жидкости, как показано на рисунке 1.1 В расплав 1 через фурму 2 вдувается струя кислорода 3, под действием которой образуется лунка 4. Распространяясь вдоль поверхности лунки, струя взаимодействует с расплавом, создавая его движение в ванне.
При таких условиях тепломассообмен струи с жидкостью происходит на межфазной поверхности. В этой связи возникает проблема нахождения при заданных давлении pн и температуре Tн газа оптимальной высоты поднятия фурмы H*, которая обеспечила бы максимальную площадь контактной поверхности.
Практический интерес представляет также расчет поля скоростей основного объема жидкости.
Рисунок 1.1 - Схема взаимодействия газовой струи с жидкостью
Основной вклад в развитие теории турбулентных струйных течений принадлежит Г.Н. Абрамовичу [14] и Л.А. Вулису [3, 15, 16] и их сотрудникам. Ими поставлено и решено большое количество задач, а также приведены принципиально важные экспериментальные исследования. Определенный интерес представляют работы и других авторов (А.С. Гиневский [17], Горбунов К.С. [18]).
Схематизация струйных течений по Г.Н. Абрамовичу заключается в том, что вместо рассмотрения непрерывных деформаций профилей скорости и температуры вдоль по течению, струя условно разбивается на три участка (начальный, переходный и основной), для каждого из которых приведены полуэмпирические формулы для расчета скорости и температуры, как вдоль оси симметрии, так и в поперечных сечениях струи. Схема показана на рис.1.2 Слабым местом предложенной модели является определение точных размеров начального и переходного участков.
Рисунок 1.2 - Схема затопленной газовой струи
Предпочтительной схемой для решения задач, поставленных в настоящей дипломной работе, является модель, представленная Л.А. Вулисом. В этой модели струйные течения газа описываются следующими уравнениями:
, i=1,2. (1.1)Здесь x, y - продольная и поперечная координаты;
F1 = u2; F2 = u (H - He);
- плотность;u - продольная скорость;
H= cpT+ u2 /2 - полное теплосодержание;