Отжиг - фазовая перекристаллизация, которая происходит при нагреве стали выше Аc3 с последующей выдержкой и медленным охлаждением. Если нет необходимости в полной перекристаллизации структурных составляющих, проводят нагрев стали выше точки Аc1 (плюс выдержка и медленное охлаждение, процесс получил название неполный отжиг). Отжиг приводит структуру стали в состояние близкое к равновесному. Структура доэвтектоидных сталей после отжига - Ферит + Перлит, эвтектоидной стали - Перлит, заэвтектоидных - Перлит + Цементит.
Первое отклонение структуры от равновесного состояния происходит при нагреве стали выше точки Аc3, выдержке и охлаждении на спокойном воздухе - нормализация.
Закалка - нагрев стали выше критической точки Аc3 с последующей выдержкой и быстрым охлаждением. При быстром охлаждении подавляются все диффузионные процессы и образуется новая структура, характерная для закаленной стали - мартенсит. Мартенсит - перенасыщенный твердый раствор углерода в - железе.
Отпуск - нагрев закаленной стали ниже точки Аc1 с последующей выдержкой и охлаждением с заданной скоростью. В практике обработки стали и других сплавов применяют также сочетания химических и термических воздействий (химико-термическая обработка). При химико-термической обработке в процессе нагрева деталей в поверхность последних внедряют атомы других элементов. Например, если дополнительно обрабатывать сталь углеродом, то процесс называется цементацией; азотом - азотированием; одновременно азотом и углеродом - цианированием; хромом - хромированием, и т.д.
Мартенситное превращение
Мартенсит - является, структурой закаленной стали. Это пересыщенный твердый раствор Углерода в - железе. С таким же содержанием углерода что и аустенит, из которого образуется мартенсит. В виду того, что атом углерода в ГЦК решетки аустенита остаются в тех же местах решетки мартенсита. Кристаллическая решетка последнего, искажается и становится тетрагональной.
Тетрагональная решетка в отличие от кубической описывается 2-мя параметрами, параметр а и с.
Отношение c/a - называется степенью тетрагональности, (c/a)1.
Мартенсит образуется при резком переохлаждении аустенита ниже температуры начала мартенситного превращения. Процесс носит бездифузионный характер в отличие от перлитного и бенитного превращения. Образование мартенсита проходит практически мгновенно. Под микроскопом структура мартенсита выглядит как отдельные иглы, ориентированные под определенными углами друг к другу. Количество превращенного в мартенсит аустенита зависит от процентного содержания углерода в стали. С увеличением процентного содержания углерода, положение точек начала и конца мартенситного превращения снижается область более низких температур, а при содержании углерода более 0,5%, точка конца мартенситного превращения снижается в область отрицательных температур. Поэтому, в структуре стали более 0,5%, после закаления, наряду с мартенситом, присутствует некоторое количество аустенита, который не превратился в мартенсит.
Этот аустенит называется аустенит остаточный. Если превышенное содержание углерода в стали, превышающее 0,5%, влияет на положение точек. Мн – начало мартенситного положения и Мк – конец мартенситного положения, то скорость охлаждения практически не влияет на расположение этих точек. Однако скорость охлаждения влияет на сам процесс превращения. Если стали охлаждения из аустенитной области и в интервале между температурами Мн и Мк дать небольшую выдержку, то во время этой выдержки будет образовываться дополнительное количество мартенсита. В связи с этим различают атермический и изотермический мартенсит. Первый образуется при непрерывном охлаждении до конца превращения. Второй – в процесс выдержки между Мн и Мк.
Твердость мартенсита зависит от содержания углерода, его кристаллической решетки и составляет величину порядка 60-65 HRCэквив. Твердость стали, зависит от скорости охлаждения из аустенитной области, определяющей тип структуры. Если проводить охлаждение со скоростью V1, то аустенит будет распадаться на ферито-циментитную смесь пластического строения, которая называется собственно-перлитной. Для стали У8 твердость собственного перлита составляет 250 НВ. С увеличение скорости охлаждения (V2,V3) происходит распад аустенита с образованием более дисперсных продуктов, представляет химическую смесь фирита и цементита так же пластичного строения. При скорости охлаждения V2 - образуется структура – сорбид. V3 - тростит, с твердостью 200НВ и 250НВ.
Если аустенит переохлаждать до температуры начала мартенситного превращения скорости V4 то, ни какого распада на ферито-цементитную смесь не происходит. Аустенит по бездифузионному механизму превращается в мартенсит. Скорость охлаждения V5 является касательной к перегибу с-образной кривой, называется критической скоростью закалки. Это минимальная скорость охлаждения, при которой аустенит переохлаждается без распада до начала мартенситного превращения. Следовательно, при закалке сплавы необходимо охлаждать со скоростью выше критической.
Превращения закаленной стали при нагреве. Превращения при отпуске
Отпуском называют термическую операцию, заключающуюся в нагреве закаленной стали до температуры ниже ac1, с последующей выдержкой и охлаждением с заданной скоростью. В процессе нагрева происходят объемные и структурные изменения в стали. Если в дилатометре – приборе, позволяющем фиксировать изменения длинны образца в зависимости от температуры, то самописец прибора будет фиксировать горизонтальную прямую линию 1.
При нагреве закаленной стали (кривая 2) до 80-1000C изменение в длине практически не наблюдается.
Начиная с температуры 800C имеет место сокращение длины образца. Вплоть до температуры 2000C происходит так называемое 1-е превращение, при отпуске, в результате мартенсита выделяется карбид Fe2C когерентно связанный с матричным твердым раствором. При этом степень тетрогональности мартенсита уменьшается, отношение c/a - стремится к 1, но не равно ей.
При нагреве выше 2000C происходит обратное. Наблюдается прирост длины образца. В интервале температур 200-3000C происходит 2-е превращение при отпуске. В интервале этих температур аустенит остаточный превращается в отпущенный мартенсит.
3-е превращение происходит при 300-400 градусах. В этом интервале температур происходит карбидное превращение. Метастабильный карбид Fe2C превращается в стабильный, в Fe3C. Одновременно происходит срыв когерентности и обособление карбидов. Снижается и уровень внутренних напряжений.
4-е превращение протекает при температуре выше 400 град., и состоит в коагуляции карбида. Структура стали после отпуска зависит от температуры отпуска.
При температуре отпуска 300-500 град., получается тростит отпуска.
При температуре 500-600 град. – сорбид отпуска, отличающегося от аналогичных структур, полученных при непрерывном охлаждении тем, что имеет зернистую морфологию, тогда как после непрерывного охлаждения из аустенитной области - пластинчатую морфологию. При одинаковой твердости тростит и сорбит отпуска по сравнению с троститом и сорбитом, полученным при непрерывном охлаждении, имеют более высокие значения в пределах текучести и ударной вязкости.
Способы закалки
В зависимости от состава стали, формы и детали выбирают способ закалки. К основным способам закалки относятся: закалка в одном охладителе, прерывистая закалка, изотермическая закалка и различные сочетания этих способов.
Закалка в одном охладителе - это наиболее распространенный способ закалки, заключается в нагреве стали выше температур, соответствующих критической точке Ac1 и Ac3 с последующей выдержкой и охлаждением со скоростью выше критической в одном охладителе (1). В качестве охлаждающей среды для углеродистых и низколегированных сталей служит вода, легированных - масло. Некоторые высоколегированные стали закаливают на спокойном воздухе. Немаловажное значение имеет и площадь сечения детали; так углеродистые и низколегированные стали с сечением 5 мм закаливают в воде. Детали переменного сечения или сечения менее 5 мм можно закаливать и в масле, поскольку охлаждающей способности масла достаточно, для того чтобы прокалить детали тонкого сечения насквозь. В ряде случаев для снижения структурных напряжений, обусловленных фазовым наклепом, проводят закалку с подстуживанием; для этого нагретую выше соответствующей температуры деталь после выдержки подстуживают, т.е. некоторое время охлаждают на спокойном воздухе, а при подходе к температурам минимальной устойчивости аустенита (500- 550) переносят в закалочную среду тем самым снижается уровень напряжений детали при полном превращении аустенита в мартенсит. Однако осуществления закалки с подстуживанием требует большого практического опыта.
Закалка в двух средах - этот способ является некоторой разновидностью способа закалки с подстуживанием и заключается в том, что нагретую до необходимой температуры деталь, выдержанную при этой температуре, переносят в охладитель, обеспечивающий такую скорость охлаждения, которая предотвратила бы распад переохлажденного аустенита в области температур минимальной устойчивости аустенита, например в воду, а затем переносят в менее интенсивно охлаждающую среду, в которой собственно и происходит закалка(2). Такой способ закалки позволяет снизить уровень закалочных напряжений и предотвратить появление таких закалочных дефектов как, например корабление.
Струйчатая закалка - этот способ применяется в том случае, когда нет необходимости закаливать деталь на одинаковую твердость по всей поверхности. Для таких типов деталей, как зубило важно получить высокую твердость рубящей кромки при сохранении вязкого хвостовика; в этом случае инструмент, нагретый до заданной температуры, охлаждают с рабочей поверхности струями воды, тем самым разрушается "паровая рубашка" и рабочая поверхность инструмента интенсивно охлаждается.