Смекни!
smekni.com

Проектирование гидросхемы приводов машины для сварки трением (стр. 3 из 3)

Для сливной магистрали

Выбираем трубу по ГОСТ 8734-75 [3,с.307351] бесшовная холоднодеформированная прецизионная:

Для напорной магистрали

10

1- для привода сжатия заготовки;

9

1- для привода тормоза;

9

1- для привода захватов.

Для сливной магистрали

14

1- для привода сжатия заготовки;

12

1- для привода тормоза;

14

1- для привода захватов.

Выбор масла.


Масло минеральное И-30А [3, с.11]:

Определение числа Рейнальдса [3, с.389]:

, (8)

где Q- расход жидкости,

;

d-внутренний диаметр трубопровода, мм;

- вязкость жидкости,
.

если число Рейнальдса >2300 – поток турбулентный, если < 2300 ламинарный.

Для напорной магистрали

- для привода сжатия заготовки;

- для привода тормоза;

- для привода захватов.

Для сливной магистрали

- для привода сжатия заготовки;

- для привода тормоза;

- для привода захватов.

Во всех ветвях магистрали поток имеет ламинарный режим течения жидкости.

5. Расчёт потерь

Так как для всех трубопроводов режим течения ламинарный то потери в трубопроводах считаются по формуле [3, с.389]::


(9)

где

- вязкость жидкости,
;

L- длина трубопровода, м;

Q- расход жидкости,

;

d-внутренний диаметр трубопровода, мм.


Первый контур- привод сжатия заготовки:

Второй контур- привод тормоза:

Третий контур-привод захватов:

6. Расчет потерь в приводе сжатия заготовки

Определимпотери в приводе сжатия заготовки:

=32 МПа - давление в приводе сжатия заготовки;

(10)

(11)

(12)

где

= 0,055 МПа - потери в двухпозиционном гидрораспределителе

= 0,055 МПа – потери в трехпозиционном гидрораспределителе

= 0,106 МПа – потери в напорной магистрали привода сжатия заготовки.

= 0,021 МПа – потери в сливной магистрали привода сжатия заготовки.

– суммарные потери в напорной магистрали привода сжатия заготовки.

– суммарные потери в сливной магистрали привода сжатия заготовки.

=0,055+0,055+0,106=0,216 МПа

=0,055+0,055+0,021=0,131 МПа

=32-0,216=31,784 МПа

7. Расчет регулировочной и механической характеристик

Механическая характеристика [1, с.392]:


(13)

где

- площадь дросселя,
;

p - постоянная, p=3,14;

D- диаметр поршня, м ; d-диаметр штока, м;

p-плотность жидкости,

;

- потери в приводе сжатия заготовки, МПа;

-нагрузка гидроцилиндра, кг;

-потери в сливном трубопроводе, МПа.

, (14)

где
-условный диаметр прохода дросселя, м.


Рисунок 2 Изменение скорости движения штока гидроцилиндра от площади дросселя


Регулировочная характеристика по формуле (13):

F, H V,
0 0,103
10000 0,094
40000 0,06

F, H V,
0 0,0512
10000 0,047
40000 0,03
F, H V,
0 0,1279
10000 0,116
40000 0,078

Рисунок 3 Изменение скорости от усилия на штоке гидроцилиндра


8. Принцип работы гидроцилиндра [2, с.48]

Гидроцилиндр с односторонним штоком по ОСТ2 Г21-1-73 состоит из следующих деталей: гильзы 6, крышек 1 и 9, поршня 4, штока 10, разрезной гайки 2, тормозных втулок 3 и 5, фланцев 7, полуколец 8, втулки 11, передней опоры 12, крышки 14, дросселей 15, обратных клапанов 16 и винтов 17. Уплотнение поршня по диаметру D обеспечивается с помощью чугунных поршневых колец, а уплотнение штока по диаметру d- с помощью шевронных уплотнений 13, натяг которых регулируется путем изменения толщины пакета прокладок между крышками 4 и 9. Масло в цилиндр подводится через отверстия

; для выпуска воздуха в крышках 1 и 9 предусмотрены отверстия, заглушаемые пробками. В исполнениях с торможением втулки 3 и 5 в конце хода входят в соответствующие расточки крышек 1 и 9, после чего слив масла из рабочей полости возможен лишь через дроссель 15, регулирующий эффективность торможения. После реверса движения масло в рабочую полость поступает через клапан 16.

Заключение

Проектирование гидросхемы приводов машины проводится с целью автоматизации основных операций, выполняемых на машине для сварки трением при использовании элементов гидроавтоматики.

В результате проделанной работы была спроектирована гидросхема привода машины для сварки трением. Рассчитаны основные характеристики и построены графики зависимостей (график изменения скорости движения штока гидроцилиндра от площади дросселя и график изменения скорости движения штока гидроцилиндра от усилия на штоке гидроцилиндра).


Список литературы

1. Башта Т.М., Руднев С.С., Некрасов Б.Б. Гидравлика, гидромашины и гидроприводы: - М.: «Машиностроение», 1982.-423с.

2. Свешников В.К., Усов А.А. Станочные гидроприводы: Справочник.: - М.: «Машиностроение», 1988.-512с.

3. Свешников В.К., Усов А.А. Станочные гидроприводы: Справочник.: - М.: « Машиностроение», 1995.-448с.