Смекни!
smekni.com

Проектирование одноступенчатого цилиндрического косозубого редуктора для привода к шнеку-смесителю (стр. 4 из 5)

Определяем отношение Rао=481/18600=0,026 (коэффициент осевого нагружения е=0,22 по табл.9.2 /2/). Так как отношение Rа/Rr4= =481/2021=0,24>е=0,22, то принимаем коэффициент радиальной нагрузки Х=0,56 и коэффициент осевой нагрузки Y=2,02.

Принимаем коэффициенты:

V=1; К δ =1,2; К τ =1.

Re3=Rr3ּVּХּ К δ ּК τ = 2655ּ1ּ1,2 ּ1=3186 H,

Re4=(Rr4ּVּХ+ Y ∙ Fа)·К δ ּК τ =(2021·1∙0,56+2,02·481)∙1,2 ּ1=2524 H

Определяем расчетную долговечность наиболее нагруженного подшипника 3:

30ּ103 ч,

ч.

Долговечность подшипников соблюдается.

9. ВТОРОЙ ЭТАП ЭСКИЗНОЙ КОМПОНОВКИ

Второй этап компоновки имеет целью конструктивно оформить зубчатые колёса, валы, подшипниковые узлы и подготовить данные для проверки прочности валов и некоторых других деталей.

Вычерчиваем шестерню и колесо по конструктивным размерам найденным ранее. Шестерню выполняем за одно целое с валом.

Конструируем узел ведущего вала:

а) наносим осевые линии, удалённые от середины редуктора на расстояние l1. используя эти осевые линии, вычерчиваем в разрезе подшипники качения;

б) вычерчиваем накладные крышки подшипников с регулировочными прокладками.

в) Переход вала от диаметра d=35 мм к присоединенному концу d=32 мм выполняем на расстоянии 3.. 5 мм от торца крышки подшипника так, чтобы ступица полумуфты не касалась их.

Длина присоединительного конца вала d=32 мм определяется длиной ступицы полумуфты.

Аналогично конструируем узел ведомого вала:

а) для фиксации зубчатого колеса в осевом направлении предусматриваем уплотнение вала с одной стороны и устанавливаем распорную втулку, с другой стороны, место переход вала от d=45 мм к d=50 мм смещаем внутрь ступицы колеса на 2-3мм с тем, чтобы гарантировать прижатие втулки к торцу ступицы а не к заплечнику вала;

б) отложив от середины редуктора расстояние l2, проводим осевые линии и вычерчиваем подшипники;

в) вычерчиваем врезные крышки подшипников с регулировочными кольцами.

На ведущем и ведомом валах применяем шпонки призматические со скруглёнными торцами по ГОСТ 23360 – 78. Вычерчиваем шпонки, принимая длины на 5-10 мм меньше длины ступиц.

10. ПОДБОР МУФТЫ

Для соединения входного вала редуктора с валом электродвигателя выбираем муфту упругую со звёздочкой . Муфта состоит из двух полумуфт специальной формы между которыми устанавливается резиновая звездочка.

Материал полумуфт – чугун – СЧ 20 , звездочки – специальная резина.

Вследствие небольшой толщины резиновой звездочки муфта обладает малой податливостью, компенсирующая незначительные смещения валов.

Радиальное и угловое смещение валов снижают долговечность резиновой звездочки, нагружая валы дополнительной изгибающей силой.

Муфту подбираем по ГОСТ 14084 – 76 (1), табл. 11.5 по диаметру вала в месте посадки dдв=32 мм и dв1=32 мм Принимаем муфту с максимально передаваемым моментом [T]=125 H∙м

Проверяем выбранную муфту по расчётному моменту:

Где Т – номинальный момент на валу

К – коэффициент перегрузки, зависящий от типа машины и режима её работы; К=1,5

Принимаем исполнение полумуфт на короткие цилиндрические концы валов: Длина полумуфт l=58 мм

Обозначение муфты

Муфта упругая со звёздочкой 125−32−2−У3 ГОСТ 14084-76


11. ПОДБОР ШПОНОК И ПРОВЕРОЧНЫЙ РАСЧЁТ ШПОНОЧНЫХ СОЕДИНЕНИЙ

Выбираем шпонки для соединения выходного конца ведущего вала со шкивом, для соединения ведомого вала с зубчатым колесом. Ступица шкива ременной передачи – чугунная. Выбираем шпонки призматические со скруглёнными торцами. Размеры сечений шпонок, пазов и длины и длины шпонок – по ГОСТ 23360-78 (1), табл. 8.9

Материал шпонок – сталь 45 нормализованная.

Напряжения смятия и условие прочности по формуле:

Допускаемые напряжения смятия при стальной ступице

=100-120МПа, при чугунной -
=50-70 МПа

Ведущий вал

Момент на ведущем валу редуктора Т2=34 Н∙м

dВ1=32 мм

bхh=10х8 мм

t1=5,0 мм

длина шпонкиl=50 мм (при длине ступицы полумуфты lст=58 мм)

Материал полумуфты чугун СЧ20.

Ведомый вал

Момент на ведомом валу редуктора Т2=163,3 Нм.

Проверяем шпонку под зубчатым колесом:

dк2=50 мм.

bхh=14х9 мм.

t1=5,5 мм.

Длина шпонки l=50 мм (при длине ступицы колеса lст=60 мм).

Материал колеса Сталь 40Х.

Проверяем шпонку под полумуфтой

dВ2=40 мм

bхh=12х8 мм

t1=5,0 мм

l=50 мм (принимаем длину ступицы звездочки 60 мм)

Материал звездочки – легированная сталь.

Прочность шпоночных соединений соблюдается.

12. ПРОВЕРОЧНЫЙ РАСЧЁТ НА СОПРОТИВЛЕНИЕ УСТАЛОСТИ ВАЛОВ РЕДУКТОРА

Примем, что нормальные напряжения от изгиба изменяются по симметричному циклу, а касательные от кручения по отнулевому (пульсирующему).

Уточнённый расчёт состоит в определении коэффициентов запаса прочности S для опасных сечений и сравнения их с допускаемыми значениями [Ѕ].

Ведущий вал

Материал вала сталь 40Х. твёрдость не менее 280 НВ. Пределы выносливости по табл. 3.16[3] σВ=900 МПа.

σ-1=410 МПа,τ-1=240 Мпа.

Проверяем сечение под подшипником ‹ 2 ›.

По построенным эпюрам определяем суммарный изгибающий момент

М1 =30,2 Нּм;

Крутящий момент в сечении вала Т1=34 Нм.

Осевой момент сопротивления сечения :

Полярный момент

Амплитуда нормальных напряжений, изменяющаяся по симметричному циклу:

Амплитуда касательных напряжений, изменяющаяся по нулевому циклу:

концентрация обусловлена посадкой внутреннего кольца подшипника на валу с натягом. При этом

;

находим отношение Кσd и Кτd для вала в местах напресовки деталей по табл. 11.2 (2), при dп2=35 мм и σВ=900МПа путём линейной интерполяции

Кσd =3,85Кτd=2,65

Коэффициент влияния шероховатости поверхности по табл. 11.4 (2) Кf=1,5

Тогда

КσД=3,85+1,5-1=4,35

КτД=2,65+1,5-1=3,15

Определяем коэффициент запаса прочности (сопротивления усталости) по нормальным и касательным напряжением:

Sσ-1/ КσД•σа=410/4,35•7,1=13,3

Sτ-1/ КτД•τа=240/3,15•2,0=38,1

Результирующий коэффициент запаса прочности для сечения вала под колесом:

S=Sσ•Sτ/

Прочность обеспечивается.

Значительное превышение обусловлено тем, что диаметр вала был значительно увеличен.

Сечение под шестерней:

По построенным эпюрам определяем суммарный изгибающий момент;

Осевой момент сопротивления сечения с учётом зубьев шестерни:

dа=40,33 мм df=33,73 мм;

5076 мм3

Полярный момент

Амплитуда нормальных напряжений, изменяющаяся по симметричному циклу:

Амплитуда касательных напряжений, изменяющаяся по нулевому циклу:

Концентрация напряжений обусловлена наличием зубьев шестерни.

Коэффициент снижения пределов выносливости определяем по формулам:

;

Для эвольвентных зубьев находим значение эффективных коэффициентов концентрации по табл. 11.2 (2).

Для стали при σВ= 900 МПа по табл. 11.2 (2) находим: Кσ=1,7; Кτ=1,55

Коэффициент влияния шероховатости поверхности по табл. 11.4 (2) Кf=1,5

Коэффициент влияния абсолютных размеров поперечного сечения по табл. 11.3 (2) при d3=37,33 мм для легированной стали: К=0,86 и Кτd=0,74

Коэффициент влияния поверхностного упрочнения по табл. 11.5 (2); Ку=1,65

Тогда Кσ=(1,7/0,86+1,5−1)/1,65=1,5

Кτ=(1,55/0,74+1,5−1)/1,65=1,57

Определяем коэффициент запаса прочности (сопротивления усталости) по нормальным и касательным напряжением:

Sσ= σ1/ Кσσа=410/1,5•13,4=20,4