Смекни!
smekni.com

Проект технологического процесса лесосклада по производству щепы (стр. 4 из 6)

Щепу хранят в закрытых складах, в контейнерах и на открытых площадках. В лесозаготовительных предприятиях, благодаря сравнительно низким затратам на устройство и содержание, наибольшее распространение получили открытые склады хранения щепы.

Запас хранимой щепы и параметры склада определяются отдельно по группам хвойных и лиственных пород.

Вместимость склада хранения щепы Ещ, м3, определяется по формуле:

Ещ =Т* Qсмвых ;

где Т-срок хранения щепы, дни

Ещ =6*314.3=1885.8 м3

На открытых складах щепу хранят в кучах прямоугольной или конусной формы.

При хранении в прямоугольных кучах площадь склада F,м2, определяется по формуле:

F= Ещ /е ;

где е - удельная вместимость склада щепы м3/ м2

F=1885.8/1.5=1257.2 м2

e=Кп*Н ;

e=0,3*5=1,5 м3/ м2

где Н-высота куч щепы, Н=5м.

Длина склада щепы L,м, определяется по формуле:

L=F/В;

где В-ширина склада щепы, В=20м,

L=1257.2/20=62.8 м.

При хранении щепы в кучах в виде конуса, диаметр основания кучи D,м, определяется по формуле:

;м ;

где β-угол естественного откоса щепы, β=30…400.


.

Высота кучи щепы Н, м, определяется по формуле:

Н=0,5Dctgβ;

Н=0,5*30*1,73=27,68 м.

При организации контейнерного склада щепы следует определить количество контейнеров nк, шт, размещенных на складе.

nкщ/Vк;

где Vк - вместимость контейнера, м.

nк=1885.8/94=20 шт.

Площадь контейнерного склада, S, м2, определяется по формуле:

S=Lкк;

Где Lк и Вк – ширина и длина контейнера соответственно, м.

S=2,5*5=12,5 м2

1.2.8 Расчет потребности силовой электроэнергии

Расчет потребности силовой электроэнергии сводится в таблице 2.9.


Таблица 2.9. Расчет потребности силовой электроэнергии.

Наименов потребителей Количество потребит Установленная мощность, кВт Мощность всех потребителей, кВт Коэффициент спроса Расчетная мощность, кВт Коэффициент потерь в цепи Потребление мощности по сменам, кВт Работа в год по сменам Годовое потребление, кВт
Выгрузка 1 13 13 0,2 2,6 0,95 2,47 2,47 260 642.2
Раскряжевка хлыстов 1 77 77 0,43 33,11 0,95 31,45 31,45 260 8177
Расколка 1 15 15 0,4 6 0,95 5,7 5,7 260 1482
Окорка 1 37 37 0,44 16,28 0,95 15,5 15,5 260 4019
Измельчение 1 55 55 0,91 50,05 0,95 47,54 47,54 260 12360
Сортировка щепы 1 3 3 0,5 1.5 0,95 1,9 1,9 260 494
Подача щепы на склад 2 70,8 141,6 0,86 121,7 0,95 231,2 231,2 520 120224
Погрузка щепы 2 70,8 141,6 0,86 121,7 0,95 231,2 231,2 520 120224
Итого 1347622.2

1.2.9 Расчет потребности электроэнергии на освещение

Расчет потребности электроэнергии на освещение приводится в таблице 2.10.


Таблица 2.10. Расчет потребности электроэнергии на освещение.

Наименование освещаемых объектов Количество объектов Норма освещенности Мощность на освещение, кВт Коэффициент потерь в цепи Расчетная мощность, кВт Число часов освещаемых в год Годовая потребность, кВт
Узел выгрузки 2464 1,4 3449,6 0,95 3277,12 3640 11928716.8
Раскряжевочная установка 1 31 31 0,95 29,45 3640 107198
Сортировочный лесотранспортер 130 7,4 9842 0,95 9349,9 3640 34033636
Узел отгрузки 37,5 1 37,5 0,95 35,62 3640 129656.8
Итого 46102729.4

1.2.10 Технико-экономические показатели нижнего лесосклада.

Расчет технико-экономические показатели нижнего лесосклада сводится в таблицу 2.11.

Таблица 2.11. ТЭП нижнего лесосклада.

Наименование показателей Ед измерения Показатели
Годовой грузооборот нижнего лесосклада тыс. м3 290
Количество основных рабочих чел 34
Годовая комплексная выработка на одного основного рабочего м3/чел.год 8529
Дневная комплексная выработка на одного основного рабочего м3/чел.день 16
Списочное количество рабочих чел 59
Годовая комплексная выработка на 1 списочного рабочего м3/чел.год 4915
Дневная комплексная выработка на 1 списочного рабочего м3/чел.день 9.4
Энерговооруженность нижнего лесосклада на 1 списочного рабочего кВт/чел 804243
Потребление электроэнергии на 1 м3 продукции кВт/ м3 163.6

2.Конструктивная часть

Исходные данные приведены в таблице 3.

Таблица 3.Исходные данные

Длина бревна, м 5
Средний диаметр, м 0,30
Масса 1 п. м. цепи, н 76
Масса траверса, н 50
Скорость цепи, м/с 1.0
Длина горизонтального участка, м 70
Длина наклонного участка, м 40
Угол подъема, ˚град 8
Шаг траверс, м 1,6

Схема продольного цепного транспортера:

Рисунок 7. Схема продольного цепного транспортера:

1 – точка натяжения; 2 – точка натяжения; 3 – точка натяжения; 4 – точка натяжения; 5 – точка натяжения; 6 – точка натяжения.

1. Натяжение в точке I, Z1, Н, определяется по формуле:

Z1=Zm=Zсб ;


где Z1-натяжение тягового устройства в первой точке, Н;

Zm-монтажное натяжение, Н;

Zсб-сбегающее натяжение, Н.

Zm=1000…1500 Н;

Z1=Zm=Zсб=1000 Н.

2. Натяжение в точке 2, Z2, Н, определяется по формуле:

Z2= Z1+qL1µ;

где q-вес одного погонного метра тягового устройства, Н.

L1-длина горизонтального участка, м;

µ-коэффициент трения скольжения траверс транспортера по направляющим; µ=0,25.

Z2=1000+107.25*70*0,25=2876.8 Н.

Вес одного погонного метра тягового устройства определяем:

q=qц+qтр/lтр; Н/м;

где qц- вес одного погонного метра цепи, Н;

qтр- вес одной траверсы, Н;

lтр- шаг траверсы, м.

q=76+50/1,6=107.25 Н/м.

3. Натяжение в точке 3, Z3, Н, определяется по формуле:

Z3= Z2+ qL2(µ*cosα-sinα);

где L2-длина наклонного участка, м;

α-угол подъема, град0.

Z3=2876.8+107.25*40(0,247-0,139).

Z3=3348.7 Н

4. Натяжение в точке 4, Z4, Н, определяется по формуле:

Z4=1,08* Z3 ;

Z4=1.08*3348.7=3616.6 Н.

5. Средний вес одного бревна,Q, Н/ м3, определяется по формуле:

Q=πd2/4*l*γ;

где d-средний диаметр одного бревна, м;

l-средняя длина бревна, м;

γ-плотность древесины; γ=8500 Н/ м3

Q=3.14*0.32* 5*8500/4;

Q=3,14*0,09*5*8500/4=3002 Н/ м3.

6. Количество бревен,n2,шт, находящихся на наклонном участке, определяется по формуле:

n2=L2/l+Δ; шт;

где l-длина бревна, м;

Δ-межторцовый разрыв, м Δ=0,5м

n2=40/5+0,5=7.2 шт.

7. Натяжение в точке 5, Z5, Н, определяется по формуле:

Z5= Z4+ qL2(µ* cosα + sinα)+ n2Q(µ*cosα+sinα);

Z5=3616.6+107.25*40(0.37)+7.2*3002(0.37);

Z5=13201.2 Н.

8. Натяжение в точке 6, Z6, Н, определяется по формуле:


Z6= Z5+ qL1µ+ n1Qµ;

где n1-количество бревен, находящихся на горизонтальном участке, шт.

Z6=13201.2+107.25*70*0,25+12.7*3002*0,25;

Z6=24608.5 Н.

n1= L1/l+ Δ;

n1=70/5+0.5=12.7 шт.

9. Добавочные динамические натяжения тягового устройства, Zдин, Н, определяется по формуле:

Zдин = ma; Н;

Zдин =82134*0.5=41067 Н.

a=υтр/t;

где υтр-средняя скорость цепи транспортера, м/с;

t-время разгона, t =2…4 с.

a=1/2=0.5.

m=nQ+2q (L1+ L2), Н;

где n- общее число бревен, находящихся на транспортере, шт.

n= n1+ n2;

n=12.5+7.2=19.7 шт.

m=19.7*3002+2*107.25*110

m=82134 Н.

Добавочные динамические натяжения тягового устройства возникают в период пуска транспортера вследствие неравномерной скорости движения тягового устройства, а также при сборе бревен автоматическими сбрасывателями. Добавочные динамические натяжения необходимо учитывать при расчете на прочность тягового устройства.

Наибольшие добавочные натяжения возникают в период пуска транспортера.

10. Максимальное натяжение тягового устройства, Zmax, Н, определяется по формуле:

Zmax= Zдин + Zнаб ;

где Zнаб- набегающее натяжение, Н.

В нашем случаеZнаб= Z6;

Zнаб=23614.1 Н.

Zmax=24608.5+41067=65675.5 Н

11. Разрушающая нагрузка для цепи транспортера, S, Н, определяется по формуле:

S= Zmax*К; Н;

где К-коэффициент запаса прочности; К=4…8.

S=65675.5*5=328377.5 Н.

12. Диаметр круглой стали для цепи транспортера, d, м, определяется по формуле:

;

где [σраз] – временное сопротивление разрыва для стали

раз] = 3430*105

13) Тяговое усилие, Zтяг, Н, определяется по формуле:

Zтяг=1,05* Zнаб - 0,95* Zсб;