Смекни!
smekni.com

Динамический анализ механизмов (стр. 1 из 2)

Содержание

Введение

1. Задачи динамического исследованиямеханизмов

2. Силы в механизмах

3. Силы инерции

4. Кинетостатический расчет механизмов

5. Теорема Н.Е. Жуковского

Литература

механизм сопротивление инерция кинетостатический

Введение

Тема контрольной работы «Динамический анализ механизмов» по дисциплине «Теория механизмов и машин».

Цель: формирование знаний динамического анализа механизмов.

Задачи: ознакомится с методами динамического анализа механизмов.

В работе рассмотрены вопросы темы:

- Задачи динамического исследования механизмов;

- Силы в механизмах;

- Силы инерции;

- Кинетостатический расчет механизмов;

- Теорема Н.Е.Жуковского о жестком рычаге.

1. Задачи динамического исследования механизмов

Основными задачами динамики механизмов являются:

1) определение сил, действующих в кинематических парах механизма;

2) определение сил трения и их влияние на работу механизма;

3) определение закона движения механизма, находящегося под действием определенных сил;

4) выявление условий, обеспечивающих заданный закон движения механизма;

5) уравновешивание механизмов.

Для решения первой задачи проводится силовое исследование механизма.

2. Силы в механизмах

Основными силами, определяющими характер движения механизма, являются движущие силы, совершающие положительную работу, и силы полезного (производственного) сопротивления, возникающие в процессе выполнения механизмом полезной работы и совершающие отрицательную работу. К движущим силам относятся: сила давления рабочей смеси на поршень цилиндра двигателя, момент, развиваемый электродвигателем на ведущем валу насоса или компрессора и т.д.

Силы полезного сопротивления – это те силы, для преодоления которых предназначен механизм. Такими силами являются: силы сопротивления резанию в токарном станке и т.д. Кроме этих сил необходимо учитывать также силы сопротивления среды, в которой движется механизм, и силы тяжести звеньев, производящие положительную или отрицательную работу в зависимости от направления движения центра тяжести звеньев – вниз или вверх.

При расчете механизма все движущие силы полезного сопротивления должны быть заданы – так называемые задаваемые силы. Задаются эти силы обычно в виде механических характеристик.

Механической характеристикой двигателя или рабочей машины называют зависимость момента, приложенного к ведомому валу двигателя или ведущему валу рабочей машины, от одного или нескольких кинематических параметров. Механические характеристики определяют экспериментальным путем или же при помощи различных математических зависимостей.

При работе механизма в результате действия всех приложенных к его звеньям указанных сил в кинематических парах возникают реакции, которые непосредственно не влияют на характер движения механизма, но на поверхностях элементов кинематических пар вызывают силы трения. Эти силы являются силами вредного сопротивления.

Реакции в кинематических парах возникают не только вследствие воздействия внешних задаваемых сил на звенья механизма, но и вследствие движения отдельных масс механизма с ускорением, что может вызвать дополнительные динамические нагрузки в кинематических парах.

Поэтому, задача кинематического расчета состоит в определении реакций в кинематических парах механизмов или, иначе говоря, давлений, возникающих в местах соприкосновения элементов кинематических пар, а также в определении уравновешивающих моментов или уравновешивающих сил.

Под уравновешивающими силами или моментами понимают те неизвестные и подлежащие определению силы или моменты, приложенные к ведущим звеньям, которые уравновешивают систему всех внешних сил и пар сил и всех сил инерции и пар сил инерции.

Если в машине, в процессе работы, ускорение звеньев достигает незначительной величины, то определение реакций в кинематических парах производится из условия равномерного движения всех звеньев механизма по условиям равновесия статики:

∑ Fi=0; ∑ M (Fi)=0.

В случае, если ускорение звеньев в машине достигает значительной величины, то на звенья действуют динамические нагрузки, которыми пренебрегать уже нельзя. Для силового расчета в этом случае следовало бы составить динамическое уравнение движения, что весьма затруднительно.

Поставленную задачу можно решить, используя принцип Даламбера, согласно которому, если к звеньям механизма вместе со всеми силами приложить еще и инерционные силы, то механизм можно рассматривать находящимся в статическом равновесии, и уравнение динамики заменить уравнениями статики:

∑ Fi=0;

∑ M (Fi) + ∑ M (Fu) + Mu=0

3. Силы инерции

В общем случае плоско-параллельного движения звена ускорения его различных материальных точек различны (по величине и направлению). Поэтому различны и элементарные силы инерции

, условно приложенные в этих точках. Эта система элементарных сил сводится к одной силе инерции Fu и к одной паре сил инерции с моментом Mu, которые равны:


где: m – масса звена;

WS - ускорение центра тяжести звена;

ε – угловое ускорение звена;

IS – момент инерции звена относительно оси, проходящей через центр тяжести.

Момент инерции звена есть мера инертности звена во вращательном движении. Его величина зависит только от самого тела: от его массы и распределения массы. Момент инерции в общем случае определяется формулой:

где: ρ – расстояние каждой элементарной массы от оси, проходящей через центр тяжести.

Сила инерции Fu приложена в центре тяжести звена S и направлена противоположно вектору ускорения центра тяжести WS.

Момент пары сил инерции направлен противоположно угловому ускорению звена ε.

Рассмотрим, к чему сводятся силы инерции при различных случаях движения звена.

1. Поступательное движение звена (рис.1).

Ускорения всех точек одинаковы, поэтому:


Рис.1

Приложена сила инерции в центре тяжести. Момент сил инерции звена Mu=0, т.к. при поступательном движении звена оно не имеет углового ускорения (ε=0).

2. Звено неравномерно (ε≠0) вращается вокруг оси, проходящей через центр тяжести (рис.2).

Рис.2

Сила инерции в этом случае равна Fu=0, т.к. ускорение центра тяжести WS=0.

Момент силы инерции равен: Mu=-IS·ε и направлен противоположно угловому ускорению ε.

3. Звено равномерно (ε=0) вращается вокруг оси, не проходящей через центр тяжести (рис.3).

Рис.3


В этом случае:

где:
.

Момент сил инерции Mu=0, так как угловое ускорение ε=0.

4. Звено равномерно (ε=0) вращается вокруг оси, проходящей через центр тяжести (рис.4).

Рис.4

В этом случае сила инерции Fu=0, т.к. аS=0 и момент инерции µu=0 (т.к. ε=0).

Такое звено называется уравновешенным.

5. Звено неравномерно вращается вокруг оси, не проходящей через центр тяжести.

Рис.5

В этом случае возникает и сила инерции и момент сил инерции:

где:

; по величине

Сила инерции приложена в центре тяжести и направлена противоположно ускорению центра тяжести WS. Момент пары сил инерции Mu направлен противоположно угловому ускорению.

Часто удобно силу инерции Fu и момент инерции Mu привести к одной равнодействующей силе Fu (рис.6). Для этого заменим момент Mu парой Fu и -Fu, момент которой равен: Fu·h=Mu.

Рис. 6

Силу -Fu этой пары приложим в центре тяжести S. Тогда другая сила окажется приложенной в некоторой точке «К» звена. Силы Fu и -Fu, приложенные в центре тяжести взаимно уравновешиваются, и, таким образом, остается только одна сила, приложенная в точке «К» звена. Эта точка называется точкой качания.

Положение точки качания определим из уравнения:

но:

тогда:

;

Окончательно:

;

Величина ℓSK для данного звена является величиной постоянной, не зависящей от его положения. Точка К всегда дальше от оси вращения, чем центр тяжести S.

6. Общий случай плоско-параллельного движения звена (рис.7).

Сила инерции:

.

Сложное движение состоит из 2-х движений: из поступательного движения звена вместе с точкой А и вращательного движения звена относительно точки А. В соответствии с этим ускорение центра тяжести складывается из 2-х ускорений:

.