Смекни!
smekni.com

Обеспечение безгидратного режима работы газопромысловых коммуникаций (стр. 13 из 17)

lnγ1 = lnγ1 [1 +

(
)] - 2, (4.9)

lnγ2 = lnγ2 [1 +

(
)] - 2, (4.10)

где χ - мольная доля метанола в растворе.

Индекс 1 относится к воде, индекс 2 - к метанолу и используется симметричная нормировка коэффициентов активности.

Предельные коэффициенты активности γ1, γ2 в диапазоне температур 243 К < T < 320 K могут быть аппроксимированы следующими зависимостями:

lnγ1 = 2,2 - 530/Т;

lnγ2 = 3.1 - 715/Т.

Коэффициенты активности γ1и γ2 связанны с активностями воды а1 и метанола а2 соотношениями:

а1 = γ1 (1 - χ), а2 = γ2χ, (4.10)

Мольная доля метанола χ связанна с его массовой концентрацией соотношением:

χмас = 3200χ/ (18 + 14χ), (4.11)

где χмас - содержание метанола в растворе, мас. %.

Точность расчета по формулам (4.9), (4.10) оценивается в 5 - 15 %.

Активность воды и ДЭГа в системе вода - ДЭГ. По данным ЮжНИИГипроГаза, коэффициенты активности воды (γ1) и ДЭГа (γ2) в системе вода - ДЭГ с погрешностью 15 % в диапазоне температур 273 К < T < 303 K равны:

lnγ1 =

[1 +
(
)] - 2, (4.12)

lnγ2 =

[1 +
(
)] - 2, (4.13)

Мольная доля (χ) ДЭГа связана с его массовой концентрацией (χмас) соотношением:

χ =

, (4.14)

Активность воды в системе вода - ЭТ - 1. Для нового осушителя и ингибитора гидратов ЭТ - 1, коэффициент активности воды γ1 по экспериментальным данным ТюменНИИГИПРОГаза равен:

Lgγ1 = -

, (4.15)

где χ - мольная доля ЭТ - 1 в водном растворе (здесь ЭТ - 1 рассматривается как компонент с некоторой средней молекулярной массой).

Следует отметить, что поведение систем спирт (гликоль) - вода не сильно отличается от идеального и в оценочных расчетах можно полагать γ1 ≈ 1 при х ≤ 0,3 и γ2 ≈ 1 при х ≥ 0,7.

Активность воды в водных растворах электролитов. Прежде всего отметим, что коэффициенты активности воды в растворах электролитов слабо зависят от температуры. Существует ряд аналитических выражений, связывающих температуру замерзания водного раствора Тз и активность воды при 298,15 К. простая формула Здановского имеет вид:

Тз = 320,8/ (1,1750 - lg а10), (4.16)

Наиболее точная эмпирическая формула такого рода (Зайцева и Цейтлина), пригодная для любых электролитов имеет вид:

Тз = 10-3/ [3.6608 - 3.2979lg а10 - 7,4302 (lg а10) 2 - 60,731 (lg а10) 3], (4.17)

Среднеквадратическая погрешность формулы (4.17) составляет 0,16 К. следует отметить, что формулу (4.17) можно использовать и для оценки активности воды в водных растворах органических ингибиторов.

4.6 Анализ возможности замены метанола на другие антигидратные реагенты на базе алифатических спиртов

Взамен чистого метанола практически с той же антигидратной эффективностью можно использовать технические его сорта, а также полупродукты производства или кубовые остатки химических производств, где метанол применяется в технологическом цикле. При этом ставится задача снижения эксплуатационных затрат на предупреждение гидратообразования за счет использования более дешевых, чем метанол, продуктов, либо за счет введения в состав ингибитора малолетучих добавок. В последнем случае уменьшается потери метанола с газовой фазой, тогда как использование нелетучих реагентов-добавок в чистом виде или невозможно, или экономически нецелесообразно (из-за высокой вязкости, неподходящей температуры замерзания, наличия предела ингибирующего действия).

В последнее время детально исследуются возможности получения различных кислородосодержащих продуктов (в основном метанольных) непосредственно на месторождениях посредством неполного окисления природного газа кислородом воздуха. В результате проведенных исследований выявлено влияние гидродинамических параметров воздуха (окислителя) и природного газа на количество и состав полученных продуктов. Выход жидкой фазы на 1000 м3 газа составляет 39 - 43 кг, в состав входят СН3ОН (около 50 мас. %), высшие спирты (1 - 2 %), формальдегид (8 %), альдегиды, эфиры, кислоты и вода (32 - 34 мас. %). Определены оптимальные термодинамические параметры ведения процесса: давление - 10 МПа, температура - 400 - 420 ºС. механизм реакции - цепной. Следует, однако, отметить определенные недостатки получаемого метанольного продукта: нестабильность состава (т.к. возможно продолжение процесса окисления) и наличие кислот, что обуславливает его коррозионную активность. Поэтому при промышленном внедрении в состав метанольного продукта необходимо вводить небольшие добавки ингибиторов коррозии, а также нейтрализовать кислоты. Антигидратная активность метанольного продукта ниже на 20 - 30 %, чем чистого метанола (см. рисунок 4.22).

В ряде случаев из-за высокой упругости паров метанола имеют место большие его потери с газовой фазой. Поэтому определенное внимание уделяется разработке смешанных составов, в которые помимо метанола входят и менее летучие водорастворимые органические реагенты. Так, предложен (А.С. № 510256) ингибитор гидратообразования, содержащий наряду с СН3ОН изопропиловый спирт (8 - 11 мас. %) и этиленгликоль (10 - 19 мас. %).

При гидратном методе получения метанола и фурфурола из этилена на стадии очистки целевого продукта с метанольной и очистной колонн отбирают метанольную фракцию (МФ), а с укрепляющей эфирной колонны - эфироальгидную фракцию (ЭФА). Впервые как ингибиторы гидратообразования МФ и ЭАФ предложено использовать еще 15 лет назад, однако, реального внедрения данные композиции до настоящего времени не получили.



Метанольная фракция по ТУ 81-04-175-78 содержит органической части не менее 93 мас. %, причем метанола не менее 80 мас. %, кислотность в перерасчете на уксусную кислоту до 500 мг/дм3. Состав МФ непостоянный (и зависит от технологического режима работы колонн), при хранении состав меняется (продукт окисляется).

В состав ЭФА входят главным образом этанол и диэтиловый эфир (в среднем в пропорции 2:

1) с небольшими примесями ацетальальдегида (и других альдегидов и эфиров) и воды. Состав ЭАФ также непостоянный. МФ и ЭАФ проявляют коррозионную активность.

С целью анализа реальных возможностей внедрения МФ и ЭАФ в практику ингибирования во ВНИИПромгазе недавно проведены детальные исследования по следующим направлениям:

- анализ промышленной базы (возможности гидролизных заводов и анализ составов этих продуктов);

- изучение антигидратной активности отдельных гидролизных фракций, их смесей и композиций;

- рассмотрение возможности выпадения твердой при контакте гидролизных фракций с пластовыми водами и при низких (до минус 60°С) температурах;

- изучении коррозионной активности продуктов.

Проведенные исследования позволили выработать определенную тактику использования МФ. Для усреднения состава рекомендовано смешивать поступающие МФ с разных заводов, а с целью снижения коррозионной активности использовать МФ в виде композиции с метанолом-сырцом, причем количество МФ не должно превышать 30 %.

Другой пример побочного продукта спиртового производства - упаренная последрожжевая барда (УПБ). УПБ представляет собой темно-коричневую жидкость со специфическим запахом, нетоксична, смешивается с водой и спиртами в любых соотношениях. Не коррозионно-активна и мало растворима в углеводородном конденсате, имеется достаточная промышленная база. Как ингибитор гидратообразования УПБ предложена во ВНИПИГАЗе. Ее основные физико-химические свойства: кинематическая вязкость при 20°С равна 2,4 м2/с, температура замерзания - минус 30°С, плотность при 20°С - 1,145 кг/м3. При практическом использовании УПБ снижение температуры гидратообразования может составить 10 - 12°С.

Таким образом, имеется ряд ингибиторов на базе метанола, которые могут быть использованы на УНТС Ямбургского ГКМ с целью сокращения эксплуатационных затрат на предупреждение гидратообразования.

5. Расчет расхода ингибитора на УКПГ – 5

5.1 Гидравлический и тепловой расчет шлейфов

Гидравлический расчет шлейфа выполняется для определения потерь при движении определенного количества газа по трубопроводу, распределения потерь давления по его длине.

Тепловой расчет шлейфа производится с целью оценки распределения температуры по его длине и определения места возможного образования гидратов.

Конечное давление в шлейфе при известном начальном давлении определяется так: