- в предварительно приготовленный насыщенный раствор хлорида магния одновременно или большими порциями вводится реакционной массы, а затем производится регламентированное введение хлороводороднго водного раствора.
Проведенные исследования показали практическую возможность реализации обоих вариантов очистки реакционной массы. Однако, гидрометаллургические способы обладают рядом недостатков:
- при выщелачивании реакционной массы теряется металл – восстановитель;
- в случае переработки магниетермической реакционной массы хлорид магния при выщелачивании частично гидролизуется и остатки гидратов, которые не могут быть полностью удалены из титановой губки при выщелачивании при последующей плавке, взаимодействуют с титаном, загрязняя его кислородом, водородом и др.
Для улучшения качества титана был разработан способ вакуумной отгонки (сепарации) магния и хлорида магния из реакционной массы, который в настоящее время стал доминирующим [3-5].
Вакуумная сепарация основана на различной упругости паров титана, магния и хлорида магния. Так, температура кипения при атмосферном давлении у титана магния и хлорида магния соответственно 3260, 1107, 1417оС. Отделение вакуумной дистилляции. Однако, максимальная температура на стенке реторты не должна превышать 1085оС. При этой температуре железо заметно взаимодействует с титаном с образованием легкоплавкого соединения - эвтектики. Поэтому для более полного удаления магния и хлорида магния и снижения температуры процесса возгонку ведут под глубоким вакуумом.
Передел вакуумной сепарации непосредственно связан с переделом восстановления и может иметь разное аппаратурно-технологическое оформление. При так называемом раздельном способе магниетермического получения титановой губки процесс восстановления ведут в отдельном аппарате и отдельной печи. После окончания процесса аппарат восстановления охлаждают, передают на отдельный участок, вскрывают, очищают, переоборудуют на аппарат вакуумной сепарации и устанавливают в другую электротермическую печь для проведения высокотемпературной вакуумной сепарации. При таком раздельном способе аппарат восстановления с печами размещают в одном помещении или корпусе, а аппараты сепарации с печами – в другом. Раздельный процесс наименее экономичен и практически не используется.
При совещенном способе получения титановой губки аппараты восстановления и сепарации собраны в один агрегат, и процессы восстановления и сепарации можно проводить в одной печи или в различных печах, но в одном корпусе. Совмещенный процесс был разработан в СССР, и в разные годы был опробован на Запорожском и на Усть-Каменогорском титано-магниевых комбинатах. На тот период он не показал заметных преимуществ перед полусовмещенным процессом и не нашел промышленного применения. Совмещенный процесс имеет ряд преимуществ: снижение энергозатрат, трудозатрат, повышение качества титана. Кроме того, в случае использования для конденсации магния и хлорида магния рядом стоящего конденсатора и возможностью демонтажа аппарата сепарации в горячем состоянии совмещенный процесс дает дополнительные преимущества, повышающие эффективность его использования: значительное снижение массы и высоты транспортируемого аппарата сепарации. Это позволяет при существующих высотах зданий и действующих мостовых кранов эксплуатировать аппараты большой цикловой производительности. Наряду с рядом преимуществ, совмещенный процесс имеет ряд существенных недостатков, связанных с более сложными конструкциями аппаратов и печей, не достаточно эффективным использованием оборудования, приборов контроля и управления, вакуумных насосов и вентиляторов. При использовании аппаратов с боковым конденсатором снижается коэффициент использования производственных площадей. При существующей конструкции совмещенных аппаратов с верхним конденсатором горячий демонтаж аппаратов сепарации невозможен. Поэтому поиск технических решений здесь необходим [6].
В СНГ, в основном, применяется полусовмещенный способ получения титановой губки. Отличие его от раздельного заключается в том, что после процесса восстановления аппарат не охлаждают и не разбирают, а в горячем состоянии в крышке монтируют легкоплавкую магниевую заглушку. На аппарат с магниевой заглушкой сверху монтируют оборотную реторту – конденсатор и в собранном виде аппарат сепарации устанавливают в печь сепарации в другом корпусе. При полусовмещенном способе расход электроэнергии ниже, а качество титановой губки лучше, чем при раздельном.
Как правило, при раздельном и полусовмещенном способах переделы восстановления и сепарации размещаются в разных корпусах, а между ними организуется передел подготовки аппаратов восстановления и сепарации (монтажный участок). Это вызвано однотипностью оборудования и технологии [4,5].
В процессе вакуумной сепарации хлорид магния и магний испаряются и осаждаются в конденсаторе. Конденсат испаряется и часть самовозгорается в контакте с воздухом при демонтаже аппарата сепарации. Скорость увлажнения и вероятность возгорания возрастают с увеличением удельной поверхности и содержания дисперсного магния. Поскольку конденсат является оборотным, кислород, содержащийся в продуктах увлажнения и горения, попадает в титановую губку, ухудшая ее качество. Поэтому на монтажном участке применяется инертный газ – аргон, который вытесняет воздух из реторты – конденсатора при монтаже аппарата восстановления.
Одним из основных факторов, определяющих условие конденсации и структуры конденсата, является тепловой режим конденсатора, обуславливаемый скоростью отгонки магния и хлорида магния из титановой губки, конструктивными особенностями, габаритами аппарата сепарации и режимом охлаждения поверхности конденсатора. В настоящее время применяется водное и воздушное охлаждение, интенсивность которого, в основном, задается в начале сепарации и не изменяется в ходе процесса, что приводит к образованию рыхлого конденсата в аппаратах большой цикловой производительности, характеризующейся повышенной тепловой нагрузкой на конденсатор.
Исследования показали, что наиболее плотный конденсат образуется при охлаждении водой конденсатора в течении 10-15 часов с момента установки аппарата в печь. Однако, установленный режим оказался неприемлемым для данной конструкции аппарата, поскольку создавалась опасность проплавления резиновой прокладки между фланцем аппарата и патрубком, через который производится откачка аппарата. Магний и хлорид магния конденсируется в зоне разделения нижней реторты и конденсатора, в том числе и на экране, где начинается преимущественное осаждение конденсата, когда экран не успевает прогреться до начала периода бурной возгонки.
Также существует конструкция аппарата с нижним расположением конденсатора. Принципиально эта конструкция аналогична аппарату сепарации с верхним расположением конденсатора. Однако, в этом аппарате применяется колпаковая съемная печь. Аппарат устанавливается на специальный стенд. Учитывая специфику процесса, нижнюю часть сборника для конденсатора делают неразъемной в виде усеченного конуса, а верхнюю часть осадителя – разъемной. На поверхность экрана устанавливают специальную кольцевую подставку, которая препятствует опусканию блока реакционной массы в процессе сепарации. Между стенками экрана и реторты при монтаже аппарата, засыпают слой хлорида магния, который создает гидравлический затвор, и препятствует проникновению расплавленного магния. Такие реторты не применяются на заводах из-за сложного аппаратурного оформления и сложности проводимых работ [7-9].
Проводились исследования по конструкции аппаратов сепарации с рядом стоящим конденсатором. Такой аппарат состоит из реактора с заглубленной крышкой, установленный в электропечь, конденсатор, помещенный в рядом стоящий с печью холодильник, соединенные между собой обогреваемым паропроводом и вакуумпроводом. Холодильник установлен в тележке с возможностью перемещения в горизонтальном направлении для компенсации температурного расширения материала трубопровода. Устройство стыковых обогреваемых патрубков паропровода обеспечивается маневром тележки с установленным на ней холодильником и конденсатором по колее (рельсам), а также подъемом и опусканием последних при помощи гидроподъемников, установленных на раме тележки. Недостатком установки является сложность и громоздкость конструкций, обеспечивающих передвижение конденсатора в горизонтальной и вертикальной плоскостях при стыковке патрубков паропровода. Так, наличие тележки с колесами обуславливает необходимость установки рельсового пути, а наличие грузоподъемников на маме тележки – необходимость иметь маслонасосную станцию с маслопроводами, что повышает трудоемкость обслуживания устройства. Наличие большого числа деталей требует значительного времени на подготовку устройства и монтажу, на их ремонт, повышает вероятность их поломки во время эксплуатации, что в целом снижает производительность устройства из-за непроизводительных простоев и его надежность.
На АО "УК ТМК" был опробован аналогичный аппарат. Основными недостатками были: зарастание внутреннего сечения сливного стояка, зарастание паропровода на выходе в конденсатор, к тому же колпаковые печи, обогреваемые паропровод, потреблял очень много электроэнергии (так же, как печь вакуумной сепарации).
Кроме того, если рассматривать конструкцию осуществления компенсации расширения материалов паропровода за счет перемещения холодильника на тележке, то конструкция тележки настолько металлоемка, что она не позволит осуществить перемещение относительно оси паропровода, что осложняет стыковку фланцев патрубков при монтаже установки, тем самым повышает трудоемкость обслуживания. Как следствие, непроизводительные простои при сборке устройства, при проведении процесса сепарации и при его разборке после процесса, ведут к снижению производительности процесса.