При окисненні вуглеводнів гідропероксди утворюються за радикально-ланцюговим механізмом. Інгібітори (фенол, олефіни, сіркомісткі з'єднання) сильно гальмують процес, тому вихідні вуглеводні повинні бути ретельно очищені від небажаних домішок.
Ізопропілбензол, отриманий алкілуванням у присутності твердого фосфорнокислого каталізатора, не придатний для окиснення. Для зменшення індукційного періоду у вихідну сировину додають гідропероксид. Солі металів перемінної валентності розкладають гідропероксиди, однак в окремих випадках їх невеликі добавки прискорюють реакцію. Такий же ефект робить мідь, навіть якщо вона присутня в складі металу, який йде на виготовлення апаратури.
При одержанні гідропероксидів завжди утворюються побічні продукти: спирти, кетони, діметилфенілкарбінол, ацетофенон, моно- і дигідропероксиди.
Підвищенню селективності сприяє зниження температури і ступеня конверсії, параметри підтримують на оптимальному рівні, що залежить від економічних факторів. Температура складає 100-1500С, корисно знижувати її по мірі нагромадження гідропероксиду, щоб сповільнити його розкладання. Ступінь конверсії складає від 30 до 10 %.
Для одержання алкілароматичних гідропероксидів використовують реактори тарілчастого типу (рис. 1, г) або каскад окисних колон (рис. 1, в). Окислення ведуть повітрям при тиску 0,3-0,5 МПа для ізопропілбензолу і 5-8 МПа – для ізобутану (в останньому випадку тиск необхідний для підтримки суміші в рідкому стані).
Отриманий розчин гідропероксиду і побічних продуктів у вихідному вуглеводні звичайно “зміцнюють” або концентрують шляхом відгону вуглеводню.
Гідропероксиди здатні до розпаду під впливом кислотних і лужних каталізаторів. У присутності вже невеликої кількості сильної кислоти (наприклад, 0,1 % H2SO4) гідропероксиди розпадаються з утворенням фенолів і карбонільних з'єднань. Виходить невелика кількість смол складної будівлі. При підвищенні концентрації кислоти і температури стає можливим перетворення ацетофенону та ацетону в окис мезитилу:
2СН3-СО-СН3 СН3-СО-СН2-С(СН3)2 СН3-СО-СН=С(СН3)2окис мезитилу
ОН
Розкладання гідропероксидів характеризується високою швидкістю: практично повне перетворення, у присутності 0,05-0,1 %-вої сірчаної кислоти при температурі 50-600С, досягається за 2-3 хвилини. Реакція гальмується водою і прискорюється утворюємим фенолом.
Через високу швидкість процесу при його промисловій реалізації дуже важливим є ефективний відвід великої кількості тепла, що виділяється, (Q=2080 кДж/кг). Для цієї мети застосовують розріджувачі, якими є продукти реакції або ацетон.
Для проведення реакції застосовують проточно-циркуляційні установки, коли виділене тепло знімають у трубчастому реакторі за рахунок охолодження його водою. Реакційну суміш на виході з реактора частково відводять на подальшу переробку, але основну кількість направляють на рециркуляцію: додають кислоту, каталізатор і в насосі змішують з вихідним гідропероксидом. За такою системою час контакту лімітується тепловідводом і є завищеним, рециркуляція веде до підвищеного виходу побічних речовин (на 1 т фенолу виходить 100-150 кг відходів).
Інший спосіб складається в проведенні реакції в розчині ацетону і відводі тепла за рахунок його випару. Ацетон конденсують у зворотному холодильнику і повертають до реактору, який можна секціонувати поперечними перегородками. Це, поряд зі зменшенням концентрації фенолу в розчині і часі контакту, знижує вихід побічних продуктів.
Кислотним розкладанням гідропероксидів одержують:
- фенол (С6Н5ОН) – проміжний продукт у виробництві барвників, лікарських і вибухових речовин;
- гідрохінон, резорцин – застосовують для одержання легко відтверджуємих фенолальдегідних полімерів, інгібіторів;
- b-нафтол – використовують у виробництві барвників;
- ацетон – прекрасний розчинник.
Технологічна схема кумольного методу одержання фенолу та ацетону представлена на рис. 2.
Рис. 2. Технологічна схема кумольного методу отримання фенолу та ацетону:
1 – реакційна колона; 2 – холодильник; 3 –промивач-сепаратор; 4 – теплообмінник; 5 – збірник; 6, 8–11 – ректифікаційні колони; 7 – вузол кислотного розкладення гідропероксиду; 12 – сепаратор.
Існують три напрямки окисної переробки парафинів:
1.Окиснення в газовій фазі, для одержання нижчих спиртів і альдегідів.
2.Термічне окиснення в рідкій фазі в присутності борної кислоти для синтезу вищих вторинних спиртів.
3.Каталітичне окиснення в рідкій фазі для одержання карбонових кислот.
Процес каталітичного окиснення в рідкій фазі має найбільше практичне застосування.
Здатність нижчих парафінів до окиснення залежить від довжини ланцюга. Так, у відсутності каталізаторів і при звичайному тиску метан починає окиснюватися при температурі 4200С, етан – при 2850С, пропан – при 2700С. З підвищенням тиску початкова температура окиснення знижується (наприклад, метан при тиску 10 МПа реагує з киснем уже при температурі 3300С). Гомогенні ініціатори (оксид азоту, бромоводень HBr), а також гетерогенні каталізатори дозволяють прискорити процес і здійснити його при більш низькій температурі.
Окиснення в газовій фазі може відбуватися зі збереженням або деструкцією вуглецевого ланцюга. Пряме окиснення метану у формальдегід утрудняється відносною легкістю подальшого окиснення і розкладання формальдегіду:
СН4
НСНО НСООН СО2 + Н2ОТому задовільна селективність за формальдегідом досягається тільки при дуже малому ступені окиснення метану в умовах недоліку кисню, що можливо лише при великій кратності циркуляції вихідного вуглеводню. Спосіб виявився економічно не вигідним.
Газофазне окиснення парафинов С3-С4 дає суміш спиртів і карбо-нильних з'єднань, що утворилися зі збереженням і з деструкцією вуглецевого ланцюга:
СН3-СН2-СН2ОН СН3-СН2-СНОСН3-СН2-СН3
СН3-СНОН-СН3 СН3-СО-СН3СН3ОН + СН3СНО
С2Н5ОН + НСНО
Кількість продуктів деструкції росте з підвищенням температури, складаючи, наприклад, для пропану 76 і 98 %, відповідно при температурі 250-3730С. Даний процес реалізований тільки в США і має задачею одержання формальдегіду, ацетальдегіду, метанолу і так званого змішаного розчинника, що містить спирти С2-С3, ацетон, метилетилкетон. Окиснення парафинів С3-С4 ведуть при температурі 4000С и недоліку кисню в пустотілому адіабатичному реакторі під тиском 0,7-2,0 МПа. Недолік процесу – складність одержуваної суміші, що викликає підвищені капітальні та й енергетичні витрати на стадії поділу.
Гетерогенно-каталітичне окиснення придбало велике значення при здійсненні ряду процесів, які не можна успішно реалізувати за допомогою радикально-ланцюгових реакцій окиснення. Серед них найважливішими є наступні:
1.Окиснення парафинів та їх похідних за насиченим атомом вуглецю зі збереженням подвійного зв'язку:
СН2=СН-СН3 + О2 ® СН2=СН-СНО + Н2О
2.Окисний амоноліз олефінів та інших вуглеводнів з одержанням нітрилів:
RCH3 + NH3 + 1,5O2 ® RCN + 3Н2О
3.Окиснення ароматичних та інших вуглеводнів з утворенням внутрішніх ангідридів ди- або тетракарбоновых кислот:
СО НС + 4,5О2 ® çïО + 2CO2 + H2O НССО
4.Прямий синтез етиленоксиду:
СН2=СН2 + 0,5О2 ® СН2-СН2О