Процес з H2SO4 і HF проводять у рідкій фазі при температурі 10-400С і тиску 0,1-1,0 МПа, з Н3РО4 – у газовій фазі при температурі 225-2750С і тиску 2-6 МПа, з алюмосилікатами і цеолітами – у рідкій або газовій фазі при 200-4000С і тому ж тиску.
Хлористий алюміній у твердому виді практично не розчинний у вуглеводнях і слабко каталізуєт реакцію. Однак по мірі виділення НСl хлористий алюміній починає перетворюватися в темну рідку речовину також не розчинну у надлишку вуглеводню. Цей комплекс Густавсона володіє високою каталітичною активністю і реакція поступово прискорюється. Його можна приготувати, пропускаючи НСl при нагріванні через суспензію AlCl3 в ароматичному вуглеводні.
Комплекс Густавсона являє собою з'єднання AlCl3 і НСl 1-6 молекулами органічної сполуки (ароматичного вуглеводню), одна з яких знаходиться в особливому структурному стані позитивно зарядженого іона (s-комплекс), а інші утворюють сольватну оболонку:
Н -Для уникнення повільного каталізу твердим хлористим алюмінієм цей активний каталітичний комплекс доцільно готувати попередньо і потім додавати на реакцію. Крім НСl його утворенню сприяють невеликі добавки води або відповідного хлорпохідного, роль якого складається в генерації НСl. Більш прийнятно використовувати НСl або RCl, тому що вода дезактивує частину каталізатора, розкладаючи його. По цій же причині необхідно добре осушувати реагенти і стежити, щоб у реакційну суміш не попадала вода, здатна викликати бурхливе розкладання комплексу. Іншими каталізаторними отрутами є багато сірчистих з'єднань, аміак, у меншому ступені дієни, ацетилен. Отже, рідка реакційна маса при алкілуванні з хлористим алюмінієм складається з двох фаз – каталітичного комплексу та вуглеводневого шару.
У якості алкілуючих агентів у промисловості застосовують хлорпохідні та олефіни. Використання спиртів менш ефективно, тому що при алкілуванні спиртами AlCl3 розкладається, а протонні кислоти розбавляються утворюємою водою. В обох випадках відбувається дезактивація каталізатора, що обумовлює його велику витрату.
При реакціях із хлорпохідними або олефінами AlCl3 витрачається тільки в каталітичних кількостях. У першому випадку він активує атом хлору, утворюючи сильно поляризований комплекс або іон карбонія, що з олефінами відбувається тільки в присутності сокаталізатору – хлористого водню:
RCH=CH2 + HCl + AlCl3®
+При каталізі комплексом хлористого алюмінію з вуглеводнем необхідний для цього протон уже мається у виді d-комплексу. Він передається молекулі олефина, і, утворившийся іон карбонія атакує ароматичне з'єднань, причому вся реакція відбувається в шарі катализаторного комплексу, що безупинно обмінюється своїми лигандами з вуглеводневим шаром. Отриманий тим або іншим шляхом іон карбония (або сильно поляризований комплекс) атакує потім ароматичне ядро, причому реакція протікає через проміжні p-комплекс та іон карбонія з наступною швидкою стадією відщіплення протону:
RR+ R+« R+« H « + H+
Будівля алкільної групи в отриманому продукті визначається правилом про проміжне утворення найбільш стабільного іона карбонію (трет- > втор- > перв-). Тому у випадку нижчих олефінів тільки з этилену утвориться первинний алкілбензол (етилбензол), із пропілену – вторинний (ізопропілбензол), а з ізобутілену – третбутилбензол:
СН2=СН2
СН3-С+Н2 С6Н5-СН2-СН3 + Н+СН3-СН=СН2
СН3-С+Н-СН3 С6Н5-СН(СН3)2 + Н+(СН3)2С=СН2
(СН3)3С+ С6Н5-С(СН3)3 + Н+Однак при алкілуванні вищими олефінами і хлорпохідними спостерігається ізомеризація алкільних груп, що відбувається перед алкілуванням, оскільки алкілбензоли до неї вже не здатні. Ця ізомеризація протікає в напрямку проміжного утворення найбільш стабільного іона карбонія, але без порушення вуглецевого кістяка алкільної групи, а лише з переміщенням реакційного центру. Унаслідок цього з хлорпохідних і олефінів із прямим ланцюгом вуглецевих атомів виходить суміш вторинних алкілбензолів:
AlCl3 +
СН3-СН2-СН2-СН2-СН2Cl СН3-СН2-СН2-СН2-СН2 СН3-СН2-СН2-СН=СН2 СН3-СН2-СН-СН2-СН3« СН3 - СН2 - СН2 – СН - СН3-H+ +C6H6 -H+ +C6H6
СН3-СН2-СН-СН2-СН3 СН3 - СН2 - СН2 – СН - СН3
C6H5 C6H5
А з з'єднань з розгалуженим ланцюгом виходять переважно третамінбензоли.
Вплив будівлі ароматичного з'єднання при реакціях алкілування в загальному таке ж, як і при інших процесах електрофільного заміщення в ароматичне ядро, але має свої особливості. Реакція алкілування відрізняється порівняно малою чутливістю до електроннодонорних заступників у ядрі. Так, алкілуючий вплив алкільних груп і конденсованих ядер при каталізі реакції хлористим алюмінієм змінюється таким чином:
3,5 3,0 2,2 1,8 1,4 1,0
С10Н8> С6Н4(СН3)2> С6Н5СН3> С6Н5С2Н5> С6Н5–СН(СН3)2> С6Н6
нафталін ксилол- толуол етилбензол ізопропілбензол бензол
діметилбензол
Електронноакцепторні заступники сильно дезактивують ароматичне ядро. Хлорбензол алкілує приблизно в 10 разів повільніше, а карбонільні, карбоксильні циано- і нітрогрупи приводять до повної дезактивації ароматичного ядра, унаслідок чого відповідні похідні взагалі не здатні до алкілування.
При алкілуванні ароматичних з'єднань у присутності будь-яких каталізаторів відбувається послідовне заміщення атомів водню з утворенням суміші продуктів різного ступеня алкілування. Так, метилірування та етилірування бензолу йде аж до одержання гексаалкілбензолів:
С6Н6
С6Н5С2Н5 С6Н4(С2Н5)2 С6Н3(С2Н5)3 ..К1 К2 К3
Кожна з реакцій за обмірьоною температурою є практично необоротною. Так константи рівноваги при синтезі етилбензолу при температурах 0, 200 і 5000С рівні відповідно 6×1011, 2,2×104 і 1,9. Однак при каталізі хлористим алюмінієм і досить жорстких умовах каталізу алюмосилікатами і цеолітами відбувається оборотна реакція переалкілування (диспропорционування) з міжмолекулярною міграцією алкільних груп:
C6H4R2 + C6H6« 2C6H5R
C6H3R3 + C6H6« C6H5R + C6H4R2
Крім розглянутого раніше утворення поліалкілбензолів при алкілуванні небажані смолоутворення, деструкція алкільних груп і полімеризація олефінів.
Смолоутворення складається в одержанні конденсованих ароматичних з'єднань з високою температурою кипіння. З подібних продуктів при алкілуванні бензолу виявлені діакрилалкани, триарілиндани, диарилоолефіни.
Ці ж умови ведуть до небажаної деструкції алкільних груп і побічному утворенню алкілбензолів з більш короткою алкільною групою. При реакції з пропіленом побічно виходить етилбензол, з етиленом – толуол.
Утворення полімерів відбувається в результаті послідовної взаємодії іона карбонія з олефінами (катіонна полімеризація):