Смекни!
smekni.com

Разработка математической модели теплообменника смешения (стр. 5 из 5)

Рис.6-1. График переходной экспериментальной характеристики.

clear, clc

dt=1

h=[0 0.22659 0.4121 0.56399 0.68834 0.79015 0.87351 0.94175 0.99763 1.0434 1.0808 1.1115 1.1366 1.1572 1.174 1.1878 1.199 1.2083 1.2158 1.222 1.2271 1.2313 1.2347 1.2374 1.2397 1.2416 1.2431 1.2444 1.2454 1.2462 1.2469]

h1=h/1.25

n=length(h)

i=1:n

t=(i-1)*dt

s1=dt*(sum(1-h1)-0.5*(1-h1(1)))

y=step(1.25,[s1 1], t);

plot(t,h,'ko',t,y);

grid

[yexp t]=step(1.25,[s1 1],t)

[s1]

s1 = 5.0054

Рис. 6-2. Совмещённый график расчётной и экспериментальной переходной характеристики.

В результате выполнения программы были получены следующие результаты:

Как видно из рисунка 6.2, экспериментальная и рассчитанная переходные характеристики практически не отличаются.Заключение

В данной курсовой работе была получена математическая модель теплообменника в виде дифференциальных уравнений. Также была получена передаточная функция объекта по заданному каналу (регулирование температуры подаваемой жидкости) и ее переходная характеристика.

Для идеального случая (возмущения отсутствуют) и при наличии возмущений по двум другим каналам была получена модель в переменных состояния. А также по заданному каналу дискретная модель.По экспериментальной передаточной функции с помощью метода площадей была получена расчетная передаточная функция. Сравнение показало, что экспериментальная и расчетная передаточные характеристики практически не отличаются.


Список использованной литературы

1 Полоцкий Л. М., Лапшенков Г.И. «Автоматизация химических производств». Теория, расчет и проектирование систем автоматизации - М:Химия, 1982. – 296 с.

2 Кузьмицкий, И.Ф., Кулаков Г.Т. Теория автоматического управления : учеб. пособие для студентов специальности «Автоматизация технологических процессов и производств». – Минск: БГТУ, 2006. – 486

3 Казаков А.В ,Кулаков М.В, Мелюшев Ю.К.Основы автоматики и автоматизации химических производств.Москва 1970.-374